[翻译]Log Everything All the Time

本文探讨了在大型分布式系统中,传统的错误/警告/信息记录方式存在的局限性,并提出了一种全新的日志记录方法,旨在通过记录所有相关信息来辅助问题诊断。

前言:

本文翻译来自 Log Everything All the Time,其中个人省略了少量内容,如果有需要,请阅读原文。本文来自 博客园 逖靖寒 http://gpcuster.cnblogs.com

 

译文:

本次的JoelOnSoftware 问答活动中,提到了一个古老的问题,什么是log以及如何去log。平常的trace/error/warning/info方式在大型的分布式系统中不是非常有用。你需要将所有的信息都记录下来才能解决遇到的问题。

为了解释为什么常用的log方式不好用,可以想象这样一种情形:你的网站运行了好几周时间都没有问题,可是突然有1天,凌晨2点的时候出现了一个问题,用户有时无法提交评论,这个现象时断时续。你现在需要去修复这个问题。

那么,我们如何去找到这个问题并修复它呢?监控系统并没有任何异常的现象,你自己提交一个评论去测试,运行正常,没有问题。看来这个问题不是那么好解决的,因为提交一个评论涉及了许多的东西,比如说:负载平衡系统,垃圾过滤,web服务器,数据库服务器,缓存服务器,文件服务器,还有交换机和路由器等等,究竟是什么地方出问题了呢?

这个时候,你所拥有的只有log。你不能关闭你的系统因为用户正在使用它,你不能更新部署一个新的系统因为你没有环境去测试新的系统是否会进入新的问题,添加debugger也无法解决这个问题。

你需要做的事情就是查看这些log,看看会其中记录了什么信息。你不需要函数或是方法的信息,你需要知道系统中所有有意思的事情发生的记录,知道这个叫“func1”的函数被调用没有任何帮助。你需要知道什么参数被传递给了函数,函数的返回值是什么。

所以,这里没有log的级别之分。你需要记录所有的信息来帮助你在将来遇到问题的时候解决问题。你真正需要的是一个时光机,虽然这是不现实的,但是主要我们的log足够详细,那么就可以认为我们拥有一个时光机。他将帮助你了解到期间发生的所有事情:是不是一个接口丢失了一个包数据,是不是相应超时了,是不是互斥锁没有正确使用?等等。

绝大多数系统都是慢慢发展到去记录所有的东西的。它们开始的时候只记录一点点信息甚至什么都不记录。当发生问题以后,它们会增加记录的内容。但是log通常没有很好的分类与整理,这将导致不好的问题覆盖率和降低程序的性能。

程序反常一般通过log来查找,反常就是一些没有预料到的东西,比如说操作,处理顺序,计算时间过长等等。不过这些反常的现象也有好处,它会告诉你如何让自己的程序更加健壮,让你知道如何在真实的环境中去处理相关的问题。

所以,好好想一下你需要调试哪些问题。不要害怕去添加log帮助你了解系统真正是如何工作的。

比如说,给每一个请求需要分配一个全局唯一的ID,这样你就区分不同请求的相关信息了,帮助你提供调试的效率和准确性。

通常log有2个等级:系统级别和开发级别。

系统级别的log会记录所有你需要去调试系统的日志,它将一直存在,不会被关闭。

开发级别的日志将添加更加详细的信息,并且可以以模块为单位开启或者是关闭。

我通常会用一个配置文件,里面定义了默认的输出级别。不过我让每一个进程通过相应的接口改变自己的输出级别。这样在开发的时候就会非常的方便。

我时常听到这样的言论:记录所有的信息效率非常低,会产生过多的数据。我不这么认为。我参加过一些项目,其中有的是实时的嵌入式系统,他们都会记录下所有的信息,甚至是驱动程序,他们都是这么做的。

下面有一些与log相关的技巧(感觉原文说得更加到位,就不翻译了):

  • Make logging efficient from the start so you aren't afraid to use it.
  • Create a dead simple to use log library that makes logging trivial for developers. Document it. Provide example code. Check for it during code reviews.
  • Log to a separate task and let the task push out log data when it can.
  • Use a preallocated buffer pool for log messages so memory allocation is just pop and push.
  • Log integer values for very time sensitive code.
  • For less time sensitive code sprintf'ing into a preallocated buffer is usually quite fast. When it's not you can use reference counted data structures and do the formatting in the logging thread.
  • Triggering a log message should take exactly one table lookup. Then the performance hit is minimal.
  • Don't do any formatting before it is determined the log is needed. This removes constant overhead for each log message.
  • Allow fancy stream based formatting so developers feel free to dump all the data they wish in any format they wish.
  • In an ISR context do not take locks or you'll introduce unbounded variable latency into the system.
  • Directly format data into fixed size buffers in the log message. This way there is no unavoidable overhead.
  • Make the log message directly queueable to the log task so queuing doesn't take more memory allocations. Memory allocation is a primary source of arbitrary latency and dead lock because of the locking. Avoid memory allocation in the log path.
  • Make the logging thread a lower priority so it won't starve the main application thread.
  • Store log messages in a circular queue to limit resource usage.
  • Write log messages to disk in big sequential blocks for efficiency.
  • Every object in your system should be dumpable to a log message. This makes logging trivial for developers.
  • Tie your logging system into your monitoring system so all the logging data from every process on every host winds its way to your centralized monitoring system. At the same time you can send all your SLA related metrics and other stats. This can all be collected in the back ground so it doesn't impact performance.
  • Add meta data throughout the request handling process that makes it easy to diagnose problems and alert on future potential problems.
  • Map software components to subsystems that are individually controllable, cross application trace levels aren't useful.
  • Add a command ports to processes that make it easy to set program behaviors at run-time and view important statistics and logging information.
  • Log information like task switch counts and times, queue depths and high and low watermarks, free memory, drop counts, mutex wait times, CPU usage, disk and network IO, and anything else that may give a full picture of how your software is behaving in the real world.
  • log的数据是你调试绝大多数大型分布式系统的根据。

    所以,从现在开始,记录所有的日志,当开始提到的那个凌晨2点钟的问题再次发生时,你就知道如何应对,修改问题了:)

     

    本文来自 博客园 逖靖寒 http://gpcuster.cnblogs.com

Quickstart Note The data files used in the quickstart guide are updated from time to time, which means that the adjusted close changes and with it the close (and the other components). That means that the actual output may be different to what was put in the documentation at the time of writing. Using the platform Let’s run through a series of examples (from almost an empty one to a fully fledged strategy) but not without before roughly explaining 2 basic concepts when working with backtrader Lines Data Feeds, Indicators and Strategies have lines. A line is a succession of points that when joined together form this line. When talking about the markets, a Data Feed has usually the following set of points per day: Open, High, Low, Close, Volume, OpenInterest The series of “Open”s along time is a Line. And therefore a Data Feed has usually 6 lines. If we also consider “DateTime” (which is the actual reference for a single point), we could count 7 lines. Index 0 Approach When accessing the values in a line, the current value is accessed with index: 0 And the “last” output value is accessed with -1. This in line with Python conventions for iterables (and a line can be iterated and is therefore an iterable) where index -1 is used to access the “last” item of the iterable/array. In our case is the last output value what’s getting accessed. As such and being index 0 right after -1, it is used to access the current moment in line. With that in mind and if we imagine a Strategy featuring a Simple Moving average created during initialization: self.sma = SimpleMovingAverage(.....) The easiest and simplest way to access the current value of this moving average: av = self.sma[0] There is no need to know how many bars/minutes/days/months have been processed, because “0” uniquely identifies the current instant. Following pythonic tradition, the “last” output value is accessed using -1: previous_value = self.sma[-1] Of course earlier output values can be accessed with -2, -3, … From 0 to 100: the samples Basic Setup Let’s get running. from __future__ import (absolute_import, division, print_function, unicode_literals) import backtrader as bt if __name__ == '__main__': cerebro = bt.Cerebro() print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue()) cerebro.run() print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue()) After the execution the output is: Starting Portfolio Value: 10000.00 Final Portfolio Value: 10000.00 In this example: backtrader was imported The Cerebro engine was instantiated The resulting cerebro instance was told to run (loop over data) And the resulting outcome was printed out Although it doesn’t seem much, let’s point out something explicitly shown: The Cerebro engine has created a broker instance in the background The instance already has some cash to start with This behind the scenes broker instantiation is a constant trait in the platform to simplify the life of the user. If no broker is set by the user, a default one is put in place. And 10K monetary units is a usual value with some brokers to begin with. Setting the Cash In the world of finance, for sure only “losers” start with 10k. Let’s change the cash and run the example again. from __future__ import (absolute_import, division, print_function, unicode_literals) import backtrader as bt if __name__ == '__main__': cerebro = bt.Cerebro() cerebro.broker.setcash(100000.0) print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue()) cerebro.run() print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue()) After the execution the output is: Starting Portfolio Value: 1000000.00 Final Portfolio Value: 1000000.00 Mission accomplished. Let’s move to tempestuous waters. Adding a Data Feed Having cash is fun, but the purpose behind all this is to let an automated strategy multiply the cash without moving a finger by operating on an asset which we see as a Data Feed Ergo … No Data Feed -> No Fun. Let’s add one to the ever growing example. from __future__ import (absolute_import, division, print_function, unicode_literals) import datetime # For datetime objects import os.path # To manage paths import sys # To find out the script name (in argv[0]) # Import the backtrader platform import backtrader as bt if __name__ == '__main__': # Create a cerebro entity cerebro = bt.Cerebro() # Datas are in a subfolder of the samples. Need to find where the script is # because it could have been called from anywhere modpath = os.path.dirname(os.path.abspath(sys.argv[0])) datapath = os.path.join(modpath, '../../datas/orcl-1995-2014.txt') # Create a Data Feed data = bt.feeds.YahooFinanceCSVData( dataname=datapath, # Do not pass values before this date fromdate=datetime.datetime(2000, 1, 1), # Do not pass values after this date todate=datetime.datetime(2000, 12, 31), reverse=False) # Add the Data Feed to Cerebro cerebro.adddata(data) # Set our desired cash start cerebro.broker.setcash(100000.0) # Print out the starting conditions print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue()) # Run over everything cerebro.run() # Print out the final result print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue()) After the execution the output is: Starting Portfolio Value: 1000000.00 Final Portfolio Value: 1000000.00 The amount of boilerplate has grown slightly, because we added: Finding out where our example script is to be able to locate the sample Data Feed file Having datetime objects to filter on which data from the Data Feed we will be operating Aside from that, the Data Feed is created and added to cerebro. The output has not changed and it would be a miracle if it had. Note Yahoo Online sends the CSV data in date descending order, which is not the standard convention. The reversed=True prameter takes into account that the CSV data in the file has already been reversed and has the standard expected date ascending order. Our First Strategy The cash is in the broker and the Data Feed is there. It seems like risky business is just around the corner. Let’s put a Strategy into the equation and print the “Close” price of each day (bar). DataSeries (the underlying class in Data Feeds) objects have aliases to access the well known OHLC (Open High Low Close) daily values. This should ease up the creation of our printing logic. from __future__ import (absolute_import, division, print_function, unicode_literals) import datetime # For datetime objects import os.path # To manage paths import sys # To find out the script name (in argv[0]) # Import the backtrader platform import backtrader as bt # Create a Stratey class TestStrategy(bt.Strategy): def log(self, txt, dt=None): ''' Logging function for this strategy''' dt = dt or self.datas[0].datetime.date(0) print('%s, %s' % (dt.isoformat(), txt)) def __init__(self): # Keep a reference to the "close" line in the data[0] dataseries self.dataclose = self.datas[0].close def next(self): # Simply log the closing price of the series from the reference self.log('Close, %.2f' % self.dataclose[0]) if __name__ == '__main__': # Create a cerebro entity cerebro = bt.Cerebro() # Add a strategy cerebro.addstrategy(TestStrategy) # Datas are in a subfolder of the samples. Need to find where the script is # because it could have been called from anywhere modpath = os.path.dirname(os.path.abspath(sys.argv[0])) datapath = os.path.join(modpath, '../../datas/orcl-1995-2014.txt') # Create a Data Feed data = bt.feeds.YahooFinanceCSVData( dataname=datapath, # Do not pass values before this date fromdate=datetime.datetime(2000, 1, 1), # Do not pass values before this date todate=datetime.datetime(2000, 12, 31), # Do not pass values after this date reverse=False) # Add the Data Feed to Cerebro cerebro.adddata(data) # Set our desired cash start cerebro.broker.setcash(100000.0) # Print out the starting conditions print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue()) # Run over everything cerebro.run() # Print out the final result print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue()) After the execution the output is: Starting Portfolio Value: 100000.00 2000-01-03T00:00:00, Close, 27.85 2000-01-04T00:00:00, Close, 25.39 2000-01-05T00:00:00, Close, 24.05 ... ... ... 2000-12-26T00:00:00, Close, 29.17 2000-12-27T00:00:00, Close, 28.94 2000-12-28T00:00:00, Close, 29.29 2000-12-29T00:00:00, Close, 27.41 Final Portfolio Value: 100000.00 Someone said the stockmarket was risky business, but it doesn’t seem so. Let’s explain some of the magic: Upon init being called the strategy already has a list of datas that are present in the platform This is a standard Python list and datas can be accessed in the order they were inserted. The first data in the list self.datas[0] is the default data for trading operations and to keep all strategy elements synchronized (it’s the system clock) self.dataclose = self.datas[0].close keeps a reference to the close line. Only one level of indirection is later needed to access the close values. The strategy next method will be called on each bar of the system clock (self.datas[0]). This is true until other things come into play like indicators, which need some bars to start producing an output. More on that later. Adding some Logic to the Strategy Let’s try some crazy idea we had by looking at some charts If the price has been falling 3 sessions in a row … BUY BUY BUY!!! from __future__ import (absolute_import, division, print_function, unicode_literals) import datetime # For datetime objects import os.path # To manage paths import sys # To find out the script name (in argv[0]) # Import the backtrader platform import backtrader as bt # Create a Stratey class TestStrategy(bt.Strategy): def log(self, txt, dt=None): ''' Logging function fot this strategy''' dt = dt or self.datas[0].datetime.date(0) print('%s, %s' % (dt.isoformat(), txt)) def __init__(self): # Keep a reference to the "close" line in the data[0] dataseries self.dataclose = self.datas[0].close def next(self): # Simply log the closing price of the series from the reference self.log('Close, %.2f' % self.dataclose[0]) if self.dataclose[0] < self.dataclose[-1]: # current close less than previous close if self.dataclose[-1] < self.dataclose[-2]: # previous close less than the previous close # BUY, BUY, BUY!!! (with all possible default parameters) self.log('BUY CREATE, %.2f' % self.dataclose[0]) self.buy() if __name__ == '__main__': # Create a cerebro entity cerebro = bt.Cerebro() # Add a strategy cerebro.addstrategy(TestStrategy) # Datas are in a subfolder of the samples. Need to find where the script is # because it could have been called from anywhere modpath = os.path.dirname(os.path.abspath(sys.argv[0])) datapath = os.path.join(modpath, '../../datas/orcl-1995-2014.txt') # Create a Data Feed data = bt.feeds.YahooFinanceCSVData( dataname=datapath, # Do not pass values before this date fromdate=datetime.datetime(2000, 1, 1), # Do not pass values before this date todate=datetime.datetime(2000, 12, 31), # Do not pass values after this date reverse=False) # Add the Data Feed to Cerebro cerebro.adddata(data) # Set our desired cash start cerebro.broker.setcash(100000.0) # Print out the starting conditions print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue()) # Run over everything cerebro.run() # Print out the final result print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue()) After the execution the output is: Starting Portfolio Value: 100000.00 2000-01-03, Close, 27.85 2000-01-04, Close, 25.39 2000-01-05, Close, 24.05 2000-01-05, BUY CREATE, 24.05 2000-01-06, Close, 22.63 2000-01-06, BUY CREATE, 22.63 2000-01-07, Close, 24.37 ... ... ... 2000-12-20, BUY CREATE, 26.88 2000-12-21, Close, 27.82 2000-12-22, Close, 30.06 2000-12-26, Close, 29.17 2000-12-27, Close, 28.94 2000-12-27, BUY CREATE, 28.94 2000-12-28, Close, 29.29 2000-12-29, Close, 27.41 Final Portfolio Value: 99725.08 Several “BUY” creation orders were issued, our porftolio value was decremented. A couple of important things are clearly missing. The order was created but it is unknown if it was executed, when and at what price. The next example will build upon that by listening to notifications of order status. The curious reader may ask how many shares are being bought, what asset is being bought and how are orders being executed. Where possible (and in this case it is) the platform fills in the gaps: self.datas[0] (the main data aka system clock) is the target asset if no other one is specified The stake is provided behind the scenes by a position sizer which uses a fixed stake, being the default “1”. It will be modified in a later example The order is executed “At Market”. The broker (shown in previous examples) executes this using the opening price of the next bar, because that’s the 1st tick after the current under examination bar. The order is executed so far without any commission (more on that later) Do not only buy … but SELL After knowing how to enter the market (long), an “exit concept” is needed and also understanding whether the strategy is in the market. Luckily a Strategy object offers access to a position attribute for the default data feed Methods buy and sell return the created (not yet executed) order Changes in orders’ status will be notified to the strategy via a notify method The “exit concept” will be an easy one: Exit after 5 bars (on the 6th bar) have elapsed for good or for worse Please notice that there is no “time” or “timeframe” implied: number of bars. The bars can represent 1 minute, 1 hour, 1 day, 1 week or any other time period. Although we know the data source is a daily one, the strategy makes no assumption about that. Additionally and to simplify: Do only allow a Buy order if not yet in the market Note The next method gets no “bar index” passed and therefore it seems obscure how to understand when 5 bars may have elapsed, but this has been modeled in pythonic way: call len on an object and it will tell you the length of its lines. Just write down (save in a variable) at which length in an operation took place and see if the current length is 5 bars away. from __future__ import (absolute_import, division, print_function, unicode_literals) import datetime # For datetime objects import os.path # To manage paths import sys # To find out the script name (in argv[0]) # Import the backtrader platform import backtrader as bt # Create a Stratey class TestStrategy(bt.Strategy): def log(self, txt, dt=None): ''' Logging function fot this strategy''' dt = dt or self.datas[0].datetime.date(0) print('%s, %s' % (dt.isoformat(), txt)) def __init__(self): # Keep a reference to the "close" line in the data[0] dataseries self.dataclose = self.datas[0].close # To keep track of pending orders self.order = None def notify_order(self, order): if order.status in [order.Submitted, order.Accepted]: # Buy/Sell order submitted/accepted to/by broker - Nothing to do return # Check if an order has been completed # Attention: broker could reject order if not enough cash if order.status in [order.Completed]: if order.isbuy(): self.log('BUY EXECUTED, %.2f' % order.executed.price) elif order.issell(): self.log('SELL EXECUTED, %.2f' % order.executed.price) self.bar_executed = len(self) elif order.status in [order.Canceled, order.Margin, order.Rejected]: self.log('Order Canceled/Margin/Rejected') # Write down: no pending order self.order = None def next(self): # Simply log the closing price of the series from the reference self.log('Close, %.2f' % self.dataclose[0]) # Check if an order is pending ... if yes, we cannot send a 2nd one if self.order: return # Check if we are in the market if not self.position: # Not yet ... we MIGHT BUY if ... if self.dataclose[0] < self.dataclose[-1]: # current close less than previous close if self.dataclose[-1] < self.dataclose[-2]: # previous close less than the previous close # BUY, BUY, BUY!!! (with default parameters) self.log('BUY CREATE, %.2f' % self.dataclose[0]) # Keep track of the created order to avoid a 2nd order self.order = self.buy() else: # Already in the market ... we might sell if len(self) >= (self.bar_executed + 5): # SELL, SELL, SELL!!! (with all possible default parameters) self.log('SELL CREATE, %.2f' % self.dataclose[0]) # Keep track of the created order to avoid a 2nd order self.order = self.sell() if __name__ == '__main__': # Create a cerebro entity cerebro = bt.Cerebro() # Add a strategy cerebro.addstrategy(TestStrategy) # Datas are in a subfolder of the samples. Need to find where the script is # because it could have been called from anywhere modpath = os.path.dirname(os.path.abspath(sys.argv[0])) datapath = os.path.join(modpath, '../../datas/orcl-1995-2014.txt') # Create a Data Feed data = bt.feeds.YahooFinanceCSVData( dataname=datapath, # Do not pass values before this date fromdate=datetime.datetime(2000, 1, 1), # Do not pass values before this date todate=datetime.datetime(2000, 12, 31), # Do not pass values after this date reverse=False) # Add the Data Feed to Cerebro cerebro.adddata(data) # Set our desired cash start cerebro.broker.setcash(100000.0) # Print out the starting conditions print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue()) # Run over everything cerebro.run() # Print out the final result print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue()) After the execution the output is: Starting Portfolio Value: 100000.00 2000-01-03T00:00:00, Close, 27.85 2000-01-04T00:00:00, Close, 25.39 2000-01-05T00:00:00, Close, 24.05 2000-01-05T00:00:00, BUY CREATE, 24.05 2000-01-06T00:00:00, BUY EXECUTED, 23.61 2000-01-06T00:00:00, Close, 22.63 2000-01-07T00:00:00, Close, 24.37 2000-01-10T00:00:00, Close, 27.29 2000-01-11T00:00:00, Close, 26.49 2000-01-12T00:00:00, Close, 24.90 2000-01-13T00:00:00, Close, 24.77 2000-01-13T00:00:00, SELL CREATE, 24.77 2000-01-14T00:00:00, SELL EXECUTED, 25.70 2000-01-14T00:00:00, Close, 25.18 ... ... ... 2000-12-15T00:00:00, SELL CREATE, 26.93 2000-12-18T00:00:00, SELL EXECUTED, 28.29 2000-12-18T00:00:00, Close, 30.18 2000-12-19T00:00:00, Close, 28.88 2000-12-20T00:00:00, Close, 26.88 2000-12-20T00:00:00, BUY CREATE, 26.88 2000-12-21T00:00:00, BUY EXECUTED, 26.23 2000-12-21T00:00:00, Close, 27.82 2000-12-22T00:00:00, Close, 30.06 2000-12-26T00:00:00, Close, 29.17 2000-12-27T00:00:00, Close, 28.94 2000-12-28T00:00:00, Close, 29.29 2000-12-29T00:00:00, Close, 27.41 2000-12-29T00:00:00, SELL CREATE, 27.41 Final Portfolio Value: 100018.53 Blistering Barnacles!!! The system made money … something must be wrong The broker says: Show me the money! And the money is called “commission”. Let’s add a reasonable 0.1% commision rate per operation (both for buying and selling … yes the broker is avid …) A single line will suffice for it: # 0.1% ... divide by 100 to remove the % cerebro.broker.setcommission(commission=0.001) Being experienced with the platform we want to see the profit or loss after a buy/sell cycle, with and without commission. from __future__ import (absolute_import, division, print_function, unicode_literals) import datetime # For datetime objects import os.path # To manage paths import sys # To find out the script name (in argv[0]) # Import the backtrader platform import backtrader as bt # Create a Stratey class TestStrategy(bt.Strategy): def log(self, txt, dt=None): ''' Logging function fot this strategy''' dt = dt or self.datas[0].datetime.date(0) print('%s, %s' % (dt.isoformat(), txt)) def __init__(self): # Keep a reference to the "close" line in the data[0] dataseries self.dataclose = self.datas[0].close # To keep track of pending orders and buy price/commission self.order = None self.buyprice = None self.buycomm = None def notify_order(self, order): if order.status in [order.Submitted, order.Accepted]: # Buy/Sell order submitted/accepted to/by broker - Nothing to do return # Check if an order has been completed # Attention: broker could reject order if not enough cash if order.status in [order.Completed]: if order.isbuy(): self.log( 'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' % (order.executed.price, order.executed.value, order.executed.comm)) self.buyprice = order.executed.price self.buycomm = order.executed.comm else: # Sell self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' % (order.executed.price, order.executed.value, order.executed.comm)) self.bar_executed = len(self) elif order.status in [order.Canceled, order.Margin, order.Rejected]: self.log('Order Canceled/Margin/Rejected') self.order = None def notify_trade(self, trade): if not trade.isclosed: return self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm)) def next(self): # Simply log the closing price of the series from the reference self.log('Close, %.2f' % self.dataclose[0]) # Check if an order is pending ... if yes, we cannot send a 2nd one if self.order: return # Check if we are in the market if not self.position: # Not yet ... we MIGHT BUY if ... if self.dataclose[0] < self.dataclose[-1]: # current close less than previous close if self.dataclose[-1] < self.dataclose[-2]: # previous close less than the previous close # BUY, BUY, BUY!!! (with default parameters) self.log('BUY CREATE, %.2f' % self.dataclose[0]) # Keep track of the created order to avoid a 2nd order self.order = self.buy() else: # Already in the market ... we might sell if len(self) >= (self.bar_executed + 5): # SELL, SELL, SELL!!! (with all possible default parameters) self.log('SELL CREATE, %.2f' % self.dataclose[0]) # Keep track of the created order to avoid a 2nd order self.order = self.sell() if __name__ == '__main__': # Create a cerebro entity cerebro = bt.Cerebro() # Add a strategy cerebro.addstrategy(TestStrategy) # Datas are in a subfolder of the samples. Need to find where the script is # because it could have been called from anywhere modpath = os.path.dirname(os.path.abspath(sys.argv[0])) datapath = os.path.join(modpath, '../../datas/orcl-1995-2014.txt') # Create a Data Feed data = bt.feeds.YahooFinanceCSVData( dataname=datapath, # Do not pass values before this date fromdate=datetime.datetime(2000, 1, 1), # Do not pass values before this date todate=datetime.datetime(2000, 12, 31), # Do not pass values after this date reverse=False) # Add the Data Feed to Cerebro cerebro.adddata(data) # Set our desired cash start cerebro.broker.setcash(100000.0) # Set the commission - 0.1% ... divide by 100 to remove the % cerebro.broker.setcommission(commission=0.001) # Print out the starting conditions print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue()) # Run over everything cerebro.run() # Print out the final result print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue()) After the execution the output is: Starting Portfolio Value: 100000.00 2000-01-03T00:00:00, Close, 27.85 2000-01-04T00:00:00, Close, 25.39 2000-01-05T00:00:00, Close, 24.05 2000-01-05T00:00:00, BUY CREATE, 24.05 2000-01-06T00:00:00, BUY EXECUTED, Price: 23.61, Cost: 23.61, Commission 0.02 2000-01-06T00:00:00, Close, 22.63 2000-01-07T00:00:00, Close, 24.37 2000-01-10T00:00:00, Close, 27.29 2000-01-11T00:00:00, Close, 26.49 2000-01-12T00:00:00, Close, 24.90 2000-01-13T00:00:00, Close, 24.77 2000-01-13T00:00:00, SELL CREATE, 24.77 2000-01-14T00:00:00, SELL EXECUTED, Price: 25.70, Cost: 25.70, Commission 0.03 2000-01-14T00:00:00, OPERATION PROFIT, GROSS 2.09, NET 2.04 2000-01-14T00:00:00, Close, 25.18 ... ... ... 2000-12-15T00:00:00, SELL CREATE, 26.93 2000-12-18T00:00:00, SELL EXECUTED, Price: 28.29, Cost: 28.29, Commission 0.03 2000-12-18T00:00:00, OPERATION PROFIT, GROSS -0.06, NET -0.12 2000-12-18T00:00:00, Close, 30.18 2000-12-19T00:00:00, Close, 28.88 2000-12-20T00:00:00, Close, 26.88 2000-12-20T00:00:00, BUY CREATE, 26.88 2000-12-21T00:00:00, BUY EXECUTED, Price: 26.23, Cost: 26.23, Commission 0.03 2000-12-21T00:00:00, Close, 27.82 2000-12-22T00:00:00, Close, 30.06 2000-12-26T00:00:00, Close, 29.17 2000-12-27T00:00:00, Close, 28.94 2000-12-28T00:00:00, Close, 29.29 2000-12-29T00:00:00, Close, 27.41 2000-12-29T00:00:00, SELL CREATE, 27.41 Final Portfolio Value: 100016.98 God Save the Queen!!! The system still made money. Before moving on, let’s notice something by filtering the “OPERATION PROFIT” lines: 2000-01-14T00:00:00, OPERATION PROFIT, GROSS 2.09, NET 2.04 2000-02-07T00:00:00, OPERATION PROFIT, GROSS 3.68, NET 3.63 2000-02-28T00:00:00, OPERATION PROFIT, GROSS 4.48, NET 4.42 2000-03-13T00:00:00, OPERATION PROFIT, GROSS 3.48, NET 3.41 2000-03-22T00:00:00, OPERATION PROFIT, GROSS -0.41, NET -0.49 2000-04-07T00:00:00, OPERATION PROFIT, GROSS 2.45, NET 2.37 2000-04-20T00:00:00, OPERATION PROFIT, GROSS -1.95, NET -2.02 2000-05-02T00:00:00, OPERATION PROFIT, GROSS 5.46, NET 5.39 2000-05-11T00:00:00, OPERATION PROFIT, GROSS -3.74, NET -3.81 2000-05-30T00:00:00, OPERATION PROFIT, GROSS -1.46, NET -1.53 2000-07-05T00:00:00, OPERATION PROFIT, GROSS -1.62, NET -1.69 2000-07-14T00:00:00, OPERATION PROFIT, GROSS 2.08, NET 2.01 2000-07-28T00:00:00, OPERATION PROFIT, GROSS 0.14, NET 0.07 2000-08-08T00:00:00, OPERATION PROFIT, GROSS 4.36, NET 4.29 2000-08-21T00:00:00, OPERATION PROFIT, GROSS 1.03, NET 0.95 2000-09-15T00:00:00, OPERATION PROFIT, GROSS -4.26, NET -4.34 2000-09-27T00:00:00, OPERATION PROFIT, GROSS 1.29, NET 1.22 2000-10-13T00:00:00, OPERATION PROFIT, GROSS -2.98, NET -3.04 2000-10-26T00:00:00, OPERATION PROFIT, GROSS 3.01, NET 2.95 2000-11-06T00:00:00, OPERATION PROFIT, GROSS -3.59, NET -3.65 2000-11-16T00:00:00, OPERATION PROFIT, GROSS 1.28, NET 1.23 2000-12-01T00:00:00, OPERATION PROFIT, GROSS 2.59, NET 2.54 2000-12-18T00:00:00, OPERATION PROFIT, GROSS -0.06, NET -0.12 Adding up the “NET” profits the final figure is: 15.83 But the system said the following at the end: 2000-12-29T00:00:00, SELL CREATE, 27.41 Final Portfolio Value: 100016.98 And obviously 15.83 is not 16.98. There is no error whatsoever. The “NET” profit of 15.83 is already cash in the bag. Unfortunately (or fortunately to better understand the platform) there is an open position on the last day of the Data Feed. Even if a SELL operation has been sent … IT HAS NOT YET BEEN EXECUTED. The “Final Portfolio Value” calculated by the broker takes into account the “Close” price on 2000-12-29. The actual execution price would have been set on the next trading day which happened to be 2001-01-02. Extending the Data Feed” to take into account this day the output is: 2001-01-02T00:00:00, SELL EXECUTED, Price: 27.87, Cost: 27.87, Commission 0.03 2001-01-02T00:00:00, OPERATION PROFIT, GROSS 1.64, NET 1.59 2001-01-02T00:00:00, Close, 24.87 2001-01-02T00:00:00, BUY CREATE, 24.87 Final Portfolio Value: 100017.41 Now adding the previous NET profit to the completed operation’s net profit: 15.83 + 1.59 = 17.42 Which (discarding rounding errors in the “print” statements) is the extra Portfolio above the initial 100000 monetary units the strategy started with. Customizing the Strategy: Parameters It would a bit unpractical to hardcode some of the values in the strategy and have no chance to change them easily. Parameters come in handy to help. Definition of parameters is easy and looks like: params = (('myparam', 27), ('exitbars', 5),) Being this a standard Python tuple with some tuples inside it, the following may look more appealling to some: params = ( ('myparam', 27), ('exitbars', 5), ) With either formatting parametrization of the strategy is allowed when adding the strategy to the Cerebro engine: # Add a strategy cerebro.addstrategy(TestStrategy, myparam=20, exitbars=7) Note The setsizing method below is deprecated. This content is kept here for anyone looking at old samples of the sources. The sources have been update to use: cerebro.addsizer(bt.sizers.FixedSize, stake=10)`` Please read the section about sizers Using the parameters in the strategy is easy, as they are stored in a “params” attribute. If we for example want to set the stake fix, we can pass the stake parameter to the position sizer like this durint init: # Set the sizer stake from the params self.sizer.setsizing(self.params.stake) We could have also called buy and sell with a stake parameter and self.params.stake as the value. The logic to exit gets modified: # Already in the market ... we might sell if len(self) >= (self.bar_executed + self.params.exitbars): With all this in mind the example evolves to look like: from __future__ import (absolute_import, division, print_function, unicode_literals) import datetime # For datetime objects import os.path # To manage paths import sys # To find out the script name (in argv[0]) # Import the backtrader platform import backtrader as bt # Create a Stratey class TestStrategy(bt.Strategy): params = ( ('exitbars', 5), ) def log(self, txt, dt=None): ''' Logging function fot this strategy''' dt = dt or self.datas[0].datetime.date(0) print('%s, %s' % (dt.isoformat(), txt)) def __init__(self): # Keep a reference to the "close" line in the data[0] dataseries self.dataclose = self.datas[0].close # To keep track of pending orders and buy price/commission self.order = None self.buyprice = None self.buycomm = None def notify_order(self, order): if order.status in [order.Submitted, order.Accepted]: # Buy/Sell order submitted/accepted to/by broker - Nothing to do return # Check if an order has been completed # Attention: broker could reject order if not enough cash if order.status in [order.Completed]: if order.isbuy(): self.log( 'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' % (order.executed.price, order.executed.value, order.executed.comm)) self.buyprice = order.executed.price self.buycomm = order.executed.comm else: # Sell self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' % (order.executed.price, order.executed.value, order.executed.comm)) self.bar_executed = len(self) elif order.status in [order.Canceled, order.Margin, order.Rejected]: self.log('Order Canceled/Margin/Rejected') self.order = None def notify_trade(self, trade): if not trade.isclosed: return self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm)) def next(self): # Simply log the closing price of the series from the reference self.log('Close, %.2f' % self.dataclose[0]) # Check if an order is pending ... if yes, we cannot send a 2nd one if self.order: return # Check if we are in the market if not self.position: # Not yet ... we MIGHT BUY if ... if self.dataclose[0] < self.dataclose[-1]: # current close less than previous close if self.dataclose[-1] < self.dataclose[-2]: # previous close less than the previous close # BUY, BUY, BUY!!! (with default parameters) self.log('BUY CREATE, %.2f' % self.dataclose[0]) # Keep track of the created order to avoid a 2nd order self.order = self.buy() else: # Already in the market ... we might sell if len(self) >= (self.bar_executed + self.params.exitbars): # SELL, SELL, SELL!!! (with all possible default parameters) self.log('SELL CREATE, %.2f' % self.dataclose[0]) # Keep track of the created order to avoid a 2nd order self.order = self.sell() if __name__ == '__main__': # Create a cerebro entity cerebro = bt.Cerebro() # Add a strategy cerebro.addstrategy(TestStrategy) # Datas are in a subfolder of the samples. Need to find where the script is # because it could have been called from anywhere modpath = os.path.dirname(os.path.abspath(sys.argv[0])) datapath = os.path.join(modpath, '../../datas/orcl-1995-2014.txt') # Create a Data Feed data = bt.feeds.YahooFinanceCSVData( dataname=datapath, # Do not pass values before this date fromdate=datetime.datetime(2000, 1, 1), # Do not pass values before this date todate=datetime.datetime(2000, 12, 31), # Do not pass values after this date reverse=False) # Add the Data Feed to Cerebro cerebro.adddata(data) # Set our desired cash start cerebro.broker.setcash(100000.0) # Add a FixedSize sizer according to the stake cerebro.addsizer(bt.sizers.FixedSize, stake=10) # Set the commission - 0.1% ... divide by 100 to remove the % cerebro.broker.setcommission(commission=0.001) # Print out the starting conditions print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue()) # Run over everything cerebro.run() # Print out the final result print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue()) After the execution the output is: Starting Portfolio Value: 100000.00 2000-01-03T00:00:00, Close, 27.85 2000-01-04T00:00:00, Close, 25.39 2000-01-05T00:00:00, Close, 24.05 2000-01-05T00:00:00, BUY CREATE, 24.05 2000-01-06T00:00:00, BUY EXECUTED, Size 10, Price: 23.61, Cost: 236.10, Commission 0.24 2000-01-06T00:00:00, Close, 22.63 ... ... ... 2000-12-20T00:00:00, BUY CREATE, 26.88 2000-12-21T00:00:00, BUY EXECUTED, Size 10, Price: 26.23, Cost: 262.30, Commission 0.26 2000-12-21T00:00:00, Close, 27.82 2000-12-22T00:00:00, Close, 30.06 2000-12-26T00:00:00, Close, 29.17 2000-12-27T00:00:00, Close, 28.94 2000-12-28T00:00:00, Close, 29.29 2000-12-29T00:00:00, Close, 27.41 2000-12-29T00:00:00, SELL CREATE, 27.41 Final Portfolio Value: 100169.80 In order to see the difference, the print outputs have also been extended to show the execution size. Having multiplied the stake by 10, the obvious has happened: the profit and loss has been multiplied by 10. Instead of 16.98, the surplus is now 169.80 Adding an indicator Having heard of indicators, the next thing anyone would add to the strategy is one of them. For sure they must be much better than a simple “3 lower closes” strategy. Inspired in one of the examples from PyAlgoTrade a strategy using a Simple Moving Average. Buy “AtMarket” if the close is greater than the Average If in the market, sell if the close is smaller than the Average Only 1 active operation is allowed in the market Most of the existing code can be kept in place. Let’s add the average during init and keep a reference to it: self.sma = bt.indicators.MovingAverageSimple(self.datas[0], period=self.params.maperiod) And of course the logic to enter and exit the market will rely on the Average values. Look in the code for the logic. Note The starting cash will be 1000 monetary units to be in line with the PyAlgoTrade example and no commission will be applied from __future__ import (absolute_import, division, print_function, unicode_literals) import datetime # For datetime objects import os.path # To manage paths import sys # To find out the script name (in argv[0]) # Import the backtrader platform import backtrader as bt # Create a Stratey class TestStrategy(bt.Strategy): params = ( ('maperiod', 15), ) def log(self, txt, dt=None): ''' Logging function fot this strategy''' dt = dt or self.datas[0].datetime.date(0) print('%s, %s' % (dt.isoformat(), txt)) def __init__(self): # Keep a reference to the "close" line in the data[0] dataseries self.dataclose = self.datas[0].close # To keep track of pending orders and buy price/commission self.order = None self.buyprice = None self.buycomm = None # Add a MovingAverageSimple indicator self.sma = bt.indicators.SimpleMovingAverage( self.datas[0], period=self.params.maperiod) def notify_order(self, order): if order.status in [order.Submitted, order.Accepted]: # Buy/Sell order submitted/accepted to/by broker - Nothing to do return # Check if an order has been completed # Attention: broker could reject order if not enough cash if order.status in [order.Completed]: if order.isbuy(): self.log( 'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' % (order.executed.price, order.executed.value, order.executed.comm)) self.buyprice = order.executed.price self.buycomm = order.executed.comm else: # Sell self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' % (order.executed.price, order.executed.value, order.executed.comm)) self.bar_executed = len(self) elif order.status in [order.Canceled, order.Margin, order.Rejected]: self.log('Order Canceled/Margin/Rejected') self.order = None def notify_trade(self, trade): if not trade.isclosed: return self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm)) def next(self): # Simply log the closing price of the series from the reference self.log('Close, %.2f' % self.dataclose[0]) # Check if an order is pending ... if yes, we cannot send a 2nd one if self.order: return # Check if we are in the market if not self.position: # Not yet ... we MIGHT BUY if ... if self.dataclose[0] > self.sma[0]: # BUY, BUY, BUY!!! (with all possible default parameters) self.log('BUY CREATE, %.2f' % self.dataclose[0]) # Keep track of the created order to avoid a 2nd order self.order = self.buy() else: if self.dataclose[0] < self.sma[0]: # SELL, SELL, SELL!!! (with all possible default parameters) self.log('SELL CREATE, %.2f' % self.dataclose[0]) # Keep track of the created order to avoid a 2nd order self.order = self.sell() if __name__ == '__main__': # Create a cerebro entity cerebro = bt.Cerebro() # Add a strategy cerebro.addstrategy(TestStrategy) # Datas are in a subfolder of the samples. Need to find where the script is # because it could have been called from anywhere modpath = os.path.dirname(os.path.abspath(sys.argv[0])) datapath = os.path.join(modpath, '../../datas/orcl-1995-2014.txt') # Create a Data Feed data = bt.feeds.YahooFinanceCSVData( dataname=datapath, # Do not pass values before this date fromdate=datetime.datetime(2000, 1, 1), # Do not pass values before this date todate=datetime.datetime(2000, 12, 31), # Do not pass values after this date reverse=False) # Add the Data Feed to Cerebro cerebro.adddata(data) # Set our desired cash start cerebro.broker.setcash(1000.0) # Add a FixedSize sizer according to the stake cerebro.addsizer(bt.sizers.FixedSize, stake=10) # Set the commission cerebro.broker.setcommission(commission=0.0) # Print out the starting conditions print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue()) # Run over everything cerebro.run() # Print out the final result print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue()) Now, before skipping to the next section LOOK CAREFULLY to the first date which is shown in the log: It’ no longer 2000-01-03, the first trading day in the year 2K. It’s 2000-01-24 … Who has stolen my cheese? The missing days are not missing. The platform has adapted to the new circumstances: An indicator (SimpleMovingAverage) has been added to the Strategy. This indicator needs X bars to produce an output: in the example: 15 2000-01-24 is the day in which the 15th bar occurs The backtrader platform assumes that the Strategy has the indicator in place for a good reason, to use it in the decision making process. And it makes no sense to try to make decisions if the indicator is not yet ready and producing values. next will be 1st called when all indicators have already reached the minimum needed period to produce a value In the example there is a single indicator, but the strategy could have any number of them. After the execution the output is: Starting Portfolio Value: 1000.00 2000-01-24T00:00:00, Close, 25.55 2000-01-25T00:00:00, Close, 26.61 2000-01-25T00:00:00, BUY CREATE, 26.61 2000-01-26T00:00:00, BUY EXECUTED, Size 10, Price: 26.76, Cost: 267.60, Commission 0.00 2000-01-26T00:00:00, Close, 25.96 2000-01-27T00:00:00, Close, 24.43 2000-01-27T00:00:00, SELL CREATE, 24.43 2000-01-28T00:00:00, SELL EXECUTED, Size 10, Price: 24.28, Cost: 242.80, Commission 0.00 2000-01-28T00:00:00, OPERATION PROFIT, GROSS -24.80, NET -24.80 2000-01-28T00:00:00, Close, 22.34 2000-01-31T00:00:00, Close, 23.55 2000-02-01T00:00:00, Close, 25.46 2000-02-02T00:00:00, Close, 25.61 2000-02-02T00:00:00, BUY CREATE, 25.61 2000-02-03T00:00:00, BUY EXECUTED, Size 10, Price: 26.11, Cost: 261.10, Commission 0.00 ... ... ... 2000-12-20T00:00:00, SELL CREATE, 26.88 2000-12-21T00:00:00, SELL EXECUTED, Size 10, Price: 26.23, Cost: 262.30, Commission 0.00 2000-12-21T00:00:00, OPERATION PROFIT, GROSS -20.60, NET -20.60 2000-12-21T00:00:00, Close, 27.82 2000-12-21T00:00:00, BUY CREATE, 27.82 2000-12-22T00:00:00, BUY EXECUTED, Size 10, Price: 28.65, Cost: 286.50, Commission 0.00 2000-12-22T00:00:00, Close, 30.06 2000-12-26T00:00:00, Close, 29.17 2000-12-27T00:00:00, Close, 28.94 2000-12-28T00:00:00, Close, 29.29 2000-12-29T00:00:00, Close, 27.41 2000-12-29T00:00:00, SELL CREATE, 27.41 Final Portfolio Value: 973.90 In the name of the King!!! A winning system turned into a losing one … and that with no commission. It may well be that simply adding an indicator is not the universal panacea. Note The same logic and data with PyAlgoTrade yields a slightly different result (slightly off). Looking at the entire printout reveals that some operations are not exactly the same. Being the culprit again the usual suspect: rounding. PyAlgoTrade does not round the datafeed values when applying the divided “adjusted close” to the data feed values. The Yahoo Data Feed provided by backtrader rounds the values down to 2 decimals after applying the adjusted close. Upon printing the values everything seems the same, but it’s obvious that sometimes that 5th place decimal plays a role. Rounding down to 2 decimals seems more realistic, because Market Exchanges do only allow a number of decimals per asset (being that 2 decimals usually for stocks) Note The Yahoo Data Feed (starting with version 1.8.11.99 allows to specify if rounding has to happen and how many decimals) Visual Inspection: Plotting A printout or log of the actual whereabouts of the system at each bar-instant is good but humans tend to be visual and therefore it seems right to offer a view of the same whereabouts as chart. Note To plot you need to have matplotlib installed Once again defaults for plotting are there to assist the platform user. Plotting is incredibly a 1 line operation: cerebro.plot() Being the location for sure after cerebro.run() has been called. In order to display the automatic plotting capabilities and a couple of easy customizations, the following will be done: A 2nd MovingAverage (Exponential) will be added. The defaults will plot it (just like the 1st) with the data. A 3rd MovingAverage (Weighted) will be added. Customized to plot in an own plot (even if not sensible) A Stochastic (Slow) will be added. No change to the defaults. A MACD will be added. No change to the defaults. A RSI will be added. No change to the defaults. A MovingAverage (Simple) will be applied to the RSI. No change to the defaults (it will be plotted with the RSI) An AverageTrueRange will be added. Changed defaults to avoid it being plotted. The entire set of additions to the init method of the Strategy: # Indicators for the plotting show bt.indicators.ExponentialMovingAverage(self.datas[0], period=25) bt.indicators.WeightedMovingAverage(self.datas[0], period=25).subplot = True bt.indicators.StochasticSlow(self.datas[0]) bt.indicators.MACDHisto(self.datas[0]) rsi = bt.indicators.RSI(self.datas[0]) bt.indicators.SmoothedMovingAverage(rsi, period=10) bt.indicators.ATR(self.datas[0]).plot = False Note Even if indicators are not explicitly added to a member variable of the strategy (like self.sma = MovingAverageSimple…), they will autoregister with the strategy and will influence the minimum period for next and will be part of the plotting. In the example only RSI is added to a temporary variable rsi with the only intention to create a MovingAverageSmoothed on it. The example now: from __future__ import (absolute_import, division, print_function, unicode_literals) import datetime # For datetime objects import os.path # To manage paths import sys # To find out the script name (in argv[0]) # Import the backtrader platform import backtrader as bt # Create a Stratey class TestStrategy(bt.Strategy): params = ( ('maperiod', 15), ) def log(self, txt, dt=None): ''' Logging function fot this strategy''' dt = dt or self.datas[0].datetime.date(0) print('%s, %s' % (dt.isoformat(), txt)) def __init__(self): # Keep a reference to the "close" line in the data[0] dataseries self.dataclose = self.datas[0].close # To keep track of pending orders and buy price/commission self.order = None self.buyprice = None self.buycomm = None # Add a MovingAverageSimple indicator self.sma = bt.indicators.SimpleMovingAverage( self.datas[0], period=self.params.maperiod) # Indicators for the plotting show bt.indicators.ExponentialMovingAverage(self.datas[0], period=25) bt.indicators.WeightedMovingAverage(self.datas[0], period=25, subplot=True) bt.indicators.StochasticSlow(self.datas[0]) bt.indicators.MACDHisto(self.datas[0]) rsi = bt.indicators.RSI(self.datas[0]) bt.indicators.SmoothedMovingAverage(rsi, period=10) bt.indicators.ATR(self.datas[0], plot=False) def notify_order(self, order): if order.status in [order.Submitted, order.Accepted]: # Buy/Sell order submitted/accepted to/by broker - Nothing to do return # Check if an order has been completed # Attention: broker could reject order if not enough cash if order.status in [order.Completed]: if order.isbuy(): self.log( 'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' % (order.executed.price, order.executed.value, order.executed.comm)) self.buyprice = order.executed.price self.buycomm = order.executed.comm else: # Sell self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' % (order.executed.price, order.executed.value, order.executed.comm)) self.bar_executed = len(self) elif order.status in [order.Canceled, order.Margin, order.Rejected]: self.log('Order Canceled/Margin/Rejected') # Write down: no pending order self.order = None def notify_trade(self, trade): if not trade.isclosed: return self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm)) def next(self): # Simply log the closing price of the series from the reference self.log('Close, %.2f' % self.dataclose[0]) # Check if an order is pending ... if yes, we cannot send a 2nd one if self.order: return # Check if we are in the market if not self.position: # Not yet ... we MIGHT BUY if ... if self.dataclose[0] > self.sma[0]: # BUY, BUY, BUY!!! (with all possible default parameters) self.log('BUY CREATE, %.2f' % self.dataclose[0]) # Keep track of the created order to avoid a 2nd order self.order = self.buy() else: if self.dataclose[0] < self.sma[0]: # SELL, SELL, SELL!!! (with all possible default parameters) self.log('SELL CREATE, %.2f' % self.dataclose[0]) # Keep track of the created order to avoid a 2nd order self.order = self.sell() if __name__ == '__main__': # Create a cerebro entity cerebro = bt.Cerebro() # Add a strategy cerebro.addstrategy(TestStrategy) # Datas are in a subfolder of the samples. Need to find where the script is # because it could have been called from anywhere modpath = os.path.dirname(os.path.abspath(sys.argv[0])) datapath = os.path.join(modpath, '../../datas/orcl-1995-2014.txt') # Create a Data Feed data = bt.feeds.YahooFinanceCSVData( dataname=datapath, # Do not pass values before this date fromdate=datetime.datetime(2000, 1, 1), # Do not pass values before this date todate=datetime.datetime(2000, 12, 31), # Do not pass values after this date reverse=False) # Add the Data Feed to Cerebro cerebro.adddata(data) # Set our desired cash start cerebro.broker.setcash(1000.0) # Add a FixedSize sizer according to the stake cerebro.addsizer(bt.sizers.FixedSize, stake=10) # Set the commission cerebro.broker.setcommission(commission=0.0) # Print out the starting conditions print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue()) # Run over everything cerebro.run() # Print out the final result print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue()) # Plot the result cerebro.plot() After the execution the output is: Starting Portfolio Value: 1000.00 2000-02-18T00:00:00, Close, 27.61 2000-02-22T00:00:00, Close, 27.97 2000-02-22T00:00:00, BUY CREATE, 27.97 2000-02-23T00:00:00, BUY EXECUTED, Size 10, Price: 28.38, Cost: 283.80, Commission 0.00 2000-02-23T00:00:00, Close, 29.73 ... ... ... 2000-12-21T00:00:00, BUY CREATE, 27.82 2000-12-22T00:00:00, BUY EXECUTED, Size 10, Price: 28.65, Cost: 286.50, Commission 0.00 2000-12-22T00:00:00, Close, 30.06 2000-12-26T00:00:00, Close, 29.17 2000-12-27T00:00:00, Close, 28.94 2000-12-28T00:00:00, Close, 29.29 2000-12-29T00:00:00, Close, 27.41 2000-12-29T00:00:00, SELL CREATE, 27.41 Final Portfolio Value: 981.00 The final result has changed even if the logic hasn’t. This is true but the logic has not been applied to the same number of bars. Note As explained before, the platform will first call next when all indicators are ready to produce a value. In this plotting example (very clear in the chart) the MACD is the last indicator to be fully ready (all 3 lines producing an output). The 1st BUY order is no longer scheduled during Jan 2000 but close to the end of Feb 2000. The chart: image Let’s Optimize Many trading books say each market and each traded stock (or commodity or ..) have different rythms. That there is no such thing as a one size fits all. Before the plotting sample, when the strategy started using an indicator the period default value was 15 bars. It’s a strategy parameter and this can be used in an optimization to change the value of the parameter and see which one better fits the market. Note There is plenty of literature about Optimization and associated pros and cons. But the advice will always point in the same direction: do not overoptimize. If a trading idea is not sound, optimizing may end producing a positive result which is only valid for the backtested dataset. The sample is modified to optimize the period of the Simple Moving Average. For the sake of clarity any output with regards to Buy/Sell orders has been removed The example now: from __future__ import (absolute_import, division, print_function, unicode_literals) import datetime # For datetime objects import os.path # To manage paths import sys # To find out the script name (in argv[0]) # Import the backtrader platform import backtrader as bt # Create a Stratey class TestStrategy(bt.Strategy): params = ( ('maperiod', 15), ('printlog', False), ) def log(self, txt, dt=None, doprint=False): ''' Logging function fot this strategy''' if self.params.printlog or doprint: dt = dt or self.datas[0].datetime.date(0) print('%s, %s' % (dt.isoformat(), txt)) def __init__(self): # Keep a reference to the "close" line in the data[0] dataseries self.dataclose = self.datas[0].close # To keep track of pending orders and buy price/commission self.order = None self.buyprice = None self.buycomm = None # Add a MovingAverageSimple indicator self.sma = bt.indicators.SimpleMovingAverage( self.datas[0], period=self.params.maperiod) def notify_order(self, order): if order.status in [order.Submitted, order.Accepted]: # Buy/Sell order submitted/accepted to/by broker - Nothing to do return # Check if an order has been completed # Attention: broker could reject order if not enough cash if order.status in [order.Completed]: if order.isbuy(): self.log( 'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' % (order.executed.price, order.executed.value, order.executed.comm)) self.buyprice = order.executed.price self.buycomm = order.executed.comm else: # Sell self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' % (order.executed.price, order.executed.value, order.executed.comm)) self.bar_executed = len(self) elif order.status in [order.Canceled, order.Margin, order.Rejected]: self.log('Order Canceled/Margin/Rejected') # Write down: no pending order self.order = None def notify_trade(self, trade): if not trade.isclosed: return self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm)) def next(self): # Simply log the closing price of the series from the reference self.log('Close, %.2f' % self.dataclose[0]) # Check if an order is pending ... if yes, we cannot send a 2nd one if self.order: return # Check if we are in the market if not self.position: # Not yet ... we MIGHT BUY if ... if self.dataclose[0] > self.sma[0]: # BUY, BUY, BUY!!! (with all possible default parameters) self.log('BUY CREATE, %.2f' % self.dataclose[0]) # Keep track of the created order to avoid a 2nd order self.order = self.buy() else: if self.dataclose[0] < self.sma[0]: # SELL, SELL, SELL!!! (with all possible default parameters) self.log('SELL CREATE, %.2f' % self.dataclose[0]) # Keep track of the created order to avoid a 2nd order self.order = self.sell() def stop(self): self.log('(MA Period %2d) Ending Value %.2f' % (self.params.maperiod, self.broker.getvalue()), doprint=True) if __name__ == '__main__': # Create a cerebro entity cerebro = bt.Cerebro() # Add a strategy strats = cerebro.optstrategy( TestStrategy, maperiod=range(10, 31)) # Datas are in a subfolder of the samples. Need to find where the script is # because it could have been called from anywhere modpath = os.path.dirname(os.path.abspath(sys.argv[0])) datapath = os.path.join(modpath, '../../datas/orcl-1995-2014.txt') # Create a Data Feed data = bt.feeds.YahooFinanceCSVData( dataname=datapath, # Do not pass values before this date fromdate=datetime.datetime(2000, 1, 1), # Do not pass values before this date todate=datetime.datetime(2000, 12, 31), # Do not pass values after this date reverse=False) # Add the Data Feed to Cerebro cerebro.adddata(data) # Set our desired cash start cerebro.broker.setcash(1000.0) # Add a FixedSize sizer according to the stake cerebro.addsizer(bt.sizers.FixedSize, stake=10) # Set the commission cerebro.broker.setcommission(commission=0.0) # Run over everything cerebro.run(maxcpus=1) Instead of calling addstrategy to add a stratey class to Cerebro, the call is made to optstrategy. And instead of passing a value a range of values is passed. One of the “Strategy” hooks is added, the stop method, which will be called when the data has been exhausted and backtesting is over. It’s used to print the final net value of the portfolio in the broker (it was done in Cerebro previously) The system will execute the strategy for each value of the range. The following will be output: 2000-12-29, (MA Period 10) Ending Value 880.30 2000-12-29, (MA Period 11) Ending Value 880.00 2000-12-29, (MA Period 12) Ending Value 830.30 2000-12-29, (MA Period 13) Ending Value 893.90 2000-12-29, (MA Period 14) Ending Value 896.90 2000-12-29, (MA Period 15) Ending Value 973.90 2000-12-29, (MA Period 16) Ending Value 959.40 2000-12-29, (MA Period 17) Ending Value 949.80 2000-12-29, (MA Period 18) Ending Value 1011.90 2000-12-29, (MA Period 19) Ending Value 1041.90 2000-12-29, (MA Period 20) Ending Value 1078.00 2000-12-29, (MA Period 21) Ending Value 1058.80 2000-12-29, (MA Period 22) Ending Value 1061.50 2000-12-29, (MA Period 23) Ending Value 1023.00 2000-12-29, (MA Period 24) Ending Value 1020.10 2000-12-29, (MA Period 25) Ending Value 1013.30 2000-12-29, (MA Period 26) Ending Value 998.30 2000-12-29, (MA Period 27) Ending Value 982.20 2000-12-29, (MA Period 28) Ending Value 975.70 2000-12-29, (MA Period 29) Ending Value 983.30 2000-12-29, (MA Period 30) Ending Value 979.80 Results: For periods below 18 the strategy (commissionless) loses money. For periods between 18 and 26 (both included) the strategy makes money. Above 26 money is lost again. And the winning period for this strategy and the given data set is: 20 bars, which wins 78.00 units over 1000 $/€ (a 7.8%) Note The extra indicators from the plotting example have been removed and the start of operations is only influenced by the Simple Moving Average which is being optimized. Hence the slightly different results for period 15 Conclusion The incremental samples have shown how to go from a barebones script to a fully working trading system which even plots the results and can be optimized. A lot more can be done to try to improve the chances of winning: Self defined Indicators Creating an indicator is easy (and even plotting them is easy) Sizers Money Management is for many the key to success Order Types (limit, stop, stoplimit) Some others To ensure all the above items can be fully utilized the documentation provides an insight into them (and other topics) Look in the table of contents and keep on reading … and developing. Best of luck
07-08
#SceneScript Reference SceneScript is follows the ECMAScript 2018 specification, so you can utilize all functionalities from ECMAScript that you would also find in similar languages such as JavaScript. This is very useful as you can make use of various helpful classes. For example, allows you to access the current date and time, allows you to access various mathematical utility functions.DateMath This page only covers all additions that SceneScript adds to make working with wallpapers possible. #Globals SceneScript introduces a handful of globals which you can access at any point in your code. Global Description engine Access to general features of the application. class.IEngine input Input related data, mainly the mouse cursor. class.IInput thisScene The currently loaded scene wallpaper. classIScene thisLayer The layer this script has been loaded on. class.ILayer thisObject The object this script belongs to. class.IThisPropertyObject console Access the console log for debugging purposes. class.IConsole shared Empty by default, allows you to share data between multiple scripts. class.Shared #Events SceneScript uses an event system that allows you to run specific code whenever certain events take place. Most notably, the event is most commonly used to execute SceneScript code at every frame that Wallpaper Engine calculates. The event is good for running code once when the wallpaper is first loaded and the event allows you to react to changes to user properties of your wallpaper. Additionally, there are a handful of events which related to mouse movement and mouse input which you can incorporate into your wallpaper.updateinitapplyUserPropertiescursor Event Description init This initialization function will be called once after the object it belongs to has been created. update This event function will be called every frame for all scripts that export it. destroy This event function will be called just before the object it belongs to gets destroyed. resizeScreen This function will be called every time the wallpaper resizes because of a change to the current resolution. applyUserProperties This event function will be called once initially when the wallpaper is loaded and whenever any user properties are being adjusted by the user. cursorEnter This event function will be called when the cursor enters the bounds of the object. cursorLeave This event function will be called when the cursor leaves the bounds of the object. cursorMove This event function will be called when the cursor has been moved. cursorDown This event function will be called when the cursor is being pressed down on an object. cursorUp This event function will be called when the cursor is being released over an object. cursorClick This event function will be called when the cursor has been pressed and released on the same object. mediaStatusChanged This event function will be called when the media integration is turned on or off by the user. mediaPlaybackChanged This event function will be called when the users starts, stops or pauses media. mediaPropertiesChanged This event function will be called when the properties of the currently playing media change. mediaThumbnailChanged This event function will be called when the thumbnail of the currently playing media changes. mediaTimelineChanged This event function will be called when the current time of the playing media changes and is only provided by certain applications. #Classes All components of Wallpaper Engine are provided with a fitting class so that you can access everything programmatically. The following list contains all relevant classes introduced by SceneScript: Class Description AnimationEvent This object describes an animation event that has been fired from a timeline or puppet warp animation. AudioBuffers Provides access to the left and right audio spectrum values and their combined average for audio visualization purposes. CameraTransforms Objects of this class describe the camera orientation and position. CursorEvent Provides information about the cursor position during cursor events. IAnimation This class represents a timeline property animation. IAnimationLayer This class represents a puppet warp or 3D model animation layer. IConsole You can access this interface anywhere in your SceneScript code through the global object to interact with the console log.console IEffect Provides access to image effects used on image layers. IEffectLayer Base class for image and text layers. IEngine Provides general information about the user device and the running wallpaper. IImageLayer This class provides access to functions specific to image layers. ITextLayer This class provides access to functions specific to text layers. IModelLayer This class provides access to functions specific to 3D model layers. IInput Provides access to input related data, mainly the mouse cursor. ILayer Provides access to data related to a layer. ILocalStorage Provides access to the local storage functionality. IMaterial Provides access to dynamic properties of materials / shader properties. IParticleSystem Provides access to particle systems and lets you modify their playback state. IParticleSystemInstance Provides access to instance modifiers for particle systems. You can use this to adjust details of a particle system dynamically. IScene Provides access to properties of the currently loaded scene. ISoundLayer Provides access functions specific to sound layers. ITextureAnimation This class represents a texture animation. IVideoTexture This class represents a video texture animation. Mat4 Utility class used for creating a 4 dimensional identity matrix. MediaPlaybackEvent Media integration event, fired when the user starts, stops or pauses media. MediaPropertiesEvent Media integration event, fired when the properties of the current media session are changing. MediaStatusEvent Media integration event, fired when the user turns the media integration on or off. MediaThumbnailEvent Media integration event, fired when the thumbnail pertaining to the current media changes. MediaTimelineEvent Optional media integration event, fired irregularly when the current time of the media session changes. Shared Related to the global object which you may use to share data between multiple scripts.shared Vec2 Utility class which holds a 2 dimensional value pair: and .xy Vec3 Utility class which holds a 3 dimensional value pair: , and .xyz #Modules Wallpaper Engine also provides some modules which can be used to access certain utility functions. These can be helpful to easily implement certain use-cases. Module Description WEColor Module which provides utility functions related to color manipulation. WEMath Module which provides utility functions related to general mathematical functions. WEVector Module which provides utility functions related to working with vectors.我让你写的代码是在wallpaer引擎内使用的,这是他的语言参考
08-06
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值