Go入门自学宝典003-变量(基本数据类型)

本文深入解析Go语言的基础数据类型,包括布尔型、整型、浮点型、字符型、字符串和复数类型。详细介绍了每种类型的长度、零值及使用方式,适合初学者快速掌握Go语言的数据类型。

003-基础数据类型
003.1 分类
Go语言内置以下这些基础类型:
类型 名称 长度 零值 说明
Bool 布尔类型 1 false 其值不为真即为家,不可以用数字代表true或false
Byte 字节型 1 0 uint8别名
Rune 字符类型 4 0 专用于存储unicode编码,等价于uint32
int, uint 整型 4或8 0 32位或64位
int8, uint8 整型 1 0 -128 ~ 127, 0 ~ 255
int16, uint16 整型 2 0 -32768 ~ 32767, 0 ~ 65535
int32, uint32 整型 4 0 -21亿 ~ 21 亿, 0 ~ 42 亿
int64, uint64 整型 8 0
float32 浮点型 4 0.0 小数位精确到7位
float64 浮点型 8 0.0 小数位精确到15位
complex64 复数类型 8
complex128 复数类型 16
uintptr 整型 4或8 ⾜以存储指针的uint32或uint64整数
string 字符串 “” utf-8字符串

003.2 布尔类型
var v1 bool
v1 = true
v2 := (1 == 2) // v2也会被推导为bool类型

//布尔类型不能接受其他类型的赋值,不支持自动或强制的类型转换
var b bool
b = 1 // err, 编译错误
b = bool(1) // err, 编译错误

003.3 整型
var v1 int32
v1 = 123
v2 := 64 // v1将会被自动推导为int类型

003.4 浮点型
var f1 float32
f1 = 12
f2 := 12.0 // 如果不加小数点, fvalue2会被推导为整型而不是浮点型,float64

003.5 字符类型
在Go语言中支持两个字符类型,一个是byte(实际上是uint8的别名),代表utf-8字符串的单个字节的值;另一个是rune,代表单个unicode字符。
package main

import (
“fmt”
)

func main() {
var ch1, ch2, ch3 byte
ch1 = ‘a’ //字符赋值
ch2 = 97 //字符的ascii码赋值
ch3 = ‘\n’ //转义字符
fmt.Printf(“ch1 = %c, ch2 = %c, %c”, ch1, ch2, ch3)
}

003.6 字符串
在Go语言中,字符串也是一种基本类型:
var str string // 声明一个字符串变量
str = “abc” // 字符串赋值
ch := str[0] // 取字符串的第一个字符
fmt.Printf(“str = %s, len = %d\n”, str, len(str)) //内置的函数len()来取字符串的长度
fmt.Printf(“str[0] = %c, ch = %c\n”, str[0], ch)

//`(反引号)括起的字符串为Raw字符串,即字符串在代码中的形式就是打印时的形式,它没有字符转义,换行也将原样输出。
str2 := `hello
mike \n \r测试
`
fmt.Println("str2 = ", str2)
/*
    str2 =  hello
          mike \n \r测试
*/

003.7 复数类型
复数实际上由两个实数(在计算机中用浮点数表示)构成,一个表示实部(real),一个表示虚部(imag)。
var v1 complex64 // 由2个float32构成的复数类型
v1 = 3.2 + 12i
v2 := 3.2 + 12i // v2是complex128类型
v3 := complex(3.2, 12) // v3结果同v2

fmt.Println(v1, v2, v3)
//内置函数real(v1)获得该复数的实部
//通过imag(v1)获得该复数的虚部
fmt.Println(real(v1), imag(v1))
本项目采用C++编程语言结合ROS框架构建了完整的双机械臂控制系统,实现了Gazebo仿真环境下的协同运动模拟,并完成了两台实体UR10工业机器人的联动控制。该毕业设计在答辩环节获得98分的优异成绩,所有程序代码均通过系统性调试验证,保证可直接部署运行。 系统架构包含三个核心模块:基于ROS通信架构的双臂协调控制器、Gazebo物理引擎下的动力学仿真环境、以及真实UR10机器人的硬件接口层。在仿真验证阶段,开发了双臂碰撞检测算法和轨迹规划模块,通过ROS控制包实现了末端执行器的同步轨迹跟踪。硬件集成方面,建立了基于TCP/IP协议的实时通信链路,解决了双机数据同步和运动指令分发等关键技术问题。 本资源适用于自动化、机械电子、人工智能等专业方向的课程实践,可作为高年级课程设计、毕业课题的重要参考案例。系统采用模块化设计理念,控制核心与硬件接口分离架构便于功能扩展,具备工程实践能力的学习者可在现有框架基础上进行二次开发,例如集成视觉感知模块或优化运动规划算法。 项目文档详细记录了环境配置流程、参数调试方法和实验验证数据,特别说明了双机协同作业时的时序同步解决方案。所有功能模块均提供完整的API接口说明,便于使用者快速理解系统架构并进行定制化修改。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值