Dijkstra单源最短路径算法

本文详细介绍迪杰斯特拉(Dijkstra)算法,一种经典的单源最短路径算法,用于计算图中一个节点到其他所有节点的最短路径。文章解释了算法的工作原理,包括如何按最短路径长度递增顺序加入顶点,以及如何处理松弛操作来更新路径长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)


2)算法思想:

设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。


通俗解释:

1、声明一个数组dis来保存源点到各个顶点的最短距离和一个保存已经找到了最短路径的顶点的集合:T

2、初始时,原点 s 的路径权重被赋为 0 (dis[s] = 0)。若对于顶点 s 存在能直接到达的边(s,m),则把dis[m]设为w(s, m),同时把所有其他(s不能直接到达的)顶点的路径长度设为无穷大。初始时,集合T只有顶点s。 
3、从dis数组选择最小值,则该值就是源点s到该值对应的顶点的最短路径,并且把该点加入到T中,此时完成一个顶点, 
4、看新加入的顶点是否可以到达其他顶点,并且看看  通过该顶点     到达其他点     的路径长度    是否比   从源点直接到达其他点的距离短,如果是,那么就替换这些顶点在dis中的值。 
5、继续从dis中找出最小值,重复3、4动作,直到T中包含了图的所有顶点。


3)算法步骤:
a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。


4)执行动画过程可参考https://visualgo.net/zh   里的Dijkstra动画



5)说明

重点需要理解这句拗口的”按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度

实际上,Dijkstra 算法是一个排序过程,就上面的例子来说,是根据A到图中其余点的最短路径长度进行排序,路径越短越先被找到,路径越长越靠后才能被找到,要找A到F的最短路径,我们依次找到了 
A –> C 的最短路径 3 
A –> C –> B 的最短路径 5 
A –> C –> D 的最短路径 6 
A –> C –> E 的最短路径 7 
A –> C –> D –> F 的最短路径 9 
Dijkstra 算法运行的附加效果是得到了另一个信息,A到C的路径最短,其次是A到B, A到D, A到E, A到F

为什么Dijkstra 算法不适用于带负权的图? 
就上个例子来说,当把一个点选入集合S时,就意味着已经找到了从A到这个点的最短路径,比如第二步,把C点选入集合S,这时已经找到A到C的最短路径了,但是如果图中存在负权边,就不能再这样说了。举个例子,假设有一个点Z,Z只与A和C有连接,从A到Z的权为50,从Z到C的权为-49,现在A到C的最短路径显然是A –> Z –> C

6)代码实现

迪杰斯特拉算法流程图


int dijkstra(int n)
{
    //初始化v[0]到v[i]的距离
    for(int i=1;i<=n;i++)
        dis[i] = w[0][i];                                       
    vis[0]=1;//标记v[0]点
    for(int i = 1; i <= n; i++)
    {
        //查找最近点
        int min = INF,k = 0;
        for(int j = 0; j <= n; j++)
            if(!vis[w] && dis[j] < min)
                min = dis[w],k = j;
        vis[k] = 1;//标记查找到的最近点
        //判断是直接v[0]连接v[j]短,还是经过v[k]连接v[j]更短
        for(int j = 1; j <= n; j++)
            if(!vis[j] && min+w[k][j] < dis[j])
                d[j] = min+w[k][j];
    }
    return dis[j];
}


7)实际例子演示

下面我求下图,从顶点v1到其他各个顶点的最短路径

这里写图片描述

首先第一步,我们先声明一个dis数组,该数组初始化的值为: 
这里写图片描述

我们的顶点集T的初始化为:T={v1}

既然是求 v1顶点到其余各个顶点的最短路程,那就先找一个离 1 号顶点最近的顶点。通过数组 dis 可知当前离v1顶点最近是 v3顶点。当选择了 2 号顶点后,dis[2](下标从0开始)的值就已经从“估计值”变为了“确定值”,即 v1顶点到 v3顶点的最短路程就是当前 dis[2]值。将V3加入到T中。 
为什么呢?因为目前离 v1顶点最近的是 v3顶点,并且这个图所有的边都是正数,那么肯定不可能通过第三个顶点中转,使得 v1顶点到 v3顶点的路程进一步缩短了。因为 v1顶点到其它顶点的路程肯定没有 v1到 v3顶点短.

OK,既然确定了一个顶点的最短路径,下面我们就要根据这个新入的顶点V3会有出度,发现以v3 为弧尾的有: < v3,v4 >,那么我们看看路径:v1–v3–v4的长度是否比v1–v4短,其实这个已经是很明显的了,因为dis[3]代表的就是v1–v4的长度为无穷大,而v1–v3–v4的长度为:10+50=60,所以更新dis[3]的值,得到如下结果: 
这里写图片描述

因此 dis[3]要更新为 60。这个过程有个专业术语叫做“松弛”。即 v1顶点到 v4顶点的路程即 dis[3],通过 < v3,v4> 这条边松弛成功。这便是 Dijkstra 算法的主要思想:通过“边”来松弛v1顶点到其余各个顶点的路程。

然后,我们又从除dis[2]和dis[0]外的其他值中寻找最小值,发现dis[4]的值最小,通过之前是解释的原理,可以知道v1到v5的最短距离就是dis[4]的值,然后,我们把v5加入到集合T中,然后,考虑v5的出度是否会影响我们的数组dis的值,v5有一条出度:< v4,v6>,然后我们发现:v1–v5–v4的长度为:50,而dis[3]的值为60,所以我们要更新dis[3]的值,更新后的dis数组如下图: 
这里写图片描述

然后,继续从dis中选择未确定的顶点的值中选择一个最小的值,发现dis[3]的值是最小的,所以把v4加入到集合T中,此时集合T={v1,v3,v5,v4},然后,考虑v4的出度是否会影响我们的数组dis的值,v4有一条出度:< v5,v4>,然后我们发现:v1–v5–v4–v6的长度为:60,而dis[5]的值为100,所以我们要更新dis[5]的值,更新后的dis数组如下图: 
这里写图片描述

然后,我们使用同样原理,分别确定了v6和v2的最短路径,最后dis的数组的值如下: 
这里写图片描述

因此,从图中,我们可以发现v1-v2的值为:∞,代表没有路径从v1到达v2。所以我们得到的最后的结果为:

起点  终点    最短路径    长度
v1    v2     无          ∞    
      v3     {v1,v3}    10
      v4     {v1,v5,v4}  50
      v5     {v1,v5}    30
      v6     {v1,v5,v4,v6} 60

以下是Dijkstra单源最短路径算法的Python实现: ```python import sys class Graph: def __init__(self, vertices): self.V = vertices self.graph = [[0 for column in range(vertices)] for row in range(vertices)] def printSolution(self, dist): print("Vertex \t Distance from Source") for node in range(self.V): print(node, "\t\t", dist[node]) def minDistance(self, dist, sptSet): min = sys.maxsize for v in range(self.V): if dist[v] < min and sptSet[v] == False: min = dist[v] min_index = v return min_index def dijkstra(self, src): dist = [sys.maxsize] * self.V dist[src] = 0 sptSet = [False] * self.V for cout in range(self.V): u = self.minDistance(dist, sptSet) sptSet[u] = True for v in range(self.V): if self.graph[u][v] > 0 and sptSet[v] == False and dist[v] > dist[u] + self.graph[u][v]: dist[v] = dist[u] + self.graph[u][v] self.printSolution(dist) # 测试 g = Graph(9) g.graph = [[0, 4, 0, 0, 0, 0, 0, 8, 0], [4, 0, 8, 0, 0, 0, 0, 11, 0], [0, 8, 0, 7, 0, 4, 0, 0, 2], [0, 0, 7, 0, 9, 14, 0, 0, 0], [0, 0, 0, 9, 0, 10, 0, 0, 0], [0, 0, 4, 14, 10, 0, 2, 0, 0], [0, 0, 0, 0, 0, 2, 0, 1, 6], [8, 11, 0, 0, 0, 0, 1, 0, 7], [0, 0, 2, 0, 0, 0, 6, 7, 0]] g.dijkstra(0) ``` 输出结果将会是: ``` Vertex Distance from Source 0 0 1 4 2 12 3 19 4 21 5 11 6 9 7 8 8 14 ``` 这个实现中,我们创建了一个Graph类,其中包含了单源最短路径算法Dijkstra的实现。在测试中,我们创建了一个有9个节点的图,并使用Dijkstra算法计算从第0个节点到其他节点的最短路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值