DP小总结

动态规划的两个重要性质:
最优子结构性质和子问题重叠性质。
最优子结构性质:如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。最优子结构性质为动态规划算法解决问题提供了重要线索。
子问题重叠性质:子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简 单地查看一下结果,从而获得较高的解题效率。

解动态规划的步骤:
1 、分析问题的最优解,找出最优解的性质,并刻画其结构特征;
2 、递归地定义最优值;
3 、采用自底向上的方式计算问题的最优值;
4 、根据计算最优值时得到的信息,构造最优解。

动态规划分类并举例:
线性动规:拦截导弹,合唱队形,挖地雷,建学校,剑客决斗等;
区域动规:石子合并, 加分二叉树,统计单词个数,炮兵布阵等;
树形动规:贪吃的九头龙,二分查找树,聚会的欢乐,数字三角形等;
背包问题:01背包问题,完全背包问题,分组背包问题,二维背包,装箱问题,挤牛奶等;

现在做dp依旧是有点蒙,每道题拿到手里第一感觉就是能不能套一些模板题,这不是个好习惯,找状态转移方程也总找不着点上,或者有时候总缺情况,但总总不顺心,越做则越躁,这不是个好兆头,希望自己可以静下来,加油!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值