十六周(统计每一个字母出现的个数)

/* 
* 程序的版权和版本声明部分 
* Copyright (c)2012, 烟台大学计算机学院学生 
* All rightsreserved. 
* 文件名称: fun.cpp 
* 作 者:孙永 
* 完成日期:2012 年12 月 13日 
* 版本号: v1.0 
* 对任务及求解方法的描述部分:玩转字符串1 
* 输入描述:略 
* 问题描述:略 
* 程序输出:如下 
*/  

#include<iostream>
using namespace std;
int main()
{
	char str[50];
	int a[10]={0},m[26]={0},n[26]={0};
	char b[26]={'A'},c[26]={'a'};
	int i=0;
	cout<<"输入字符串:";
	gets(str);
	while(str[i]!='\0')
	{
		if(str[i]>='0'&&str[i]<='9')
		{
			a[str[i]-'0']++;
		}
		if(str[i]>='A'&&str[i]<='Z')
		{
			m[str[i]-'A']++;
		}
		if(str[i]>='a'&&str[i]<='z')
		{
			n[str[i]-'a']++;
		}
		i++;
	}
	for(i=0;i<26;++i){
		b[i]='A'+i;
		c[i]='a'+i;
		
	}
	for(i=0;i<10;++i)
		cout<<i<<"的个数是:"<<a[i]<<'\t';
	for(i=0;i<26;++i)
		cout<<b[i]<<"的个数是:"<<m[i]<<'\t';
	for(i=0;i<26;++i)
		cout<<c[i]<<"的个数是:"<<n[i]<<'\t';
	return 0;
	
}

运行结果:


【电能质量扰动】基于ML和DWT的电能质量扰动分类方法研究(Matlab实现)内容概要:本文研究了一种基于机器学习(ML)和离散小波变换(DWT)的电能质量扰动分类方法,并提供了Matlab实现方案。首先利用DWT对电能质量信号进行多尺度分解,提取信号的时频域特征,有效捕捉电压暂降、暂升、中断、谐波、闪变等常见扰动的关键信息;随后结合机器学习分类器(如SVM、BP神经网络等)对提取的特征进行训练与分类,实现对不同类型扰动的自动识别与准确区分。该方法充分发挥DWT在信号去噪与特征提取方面的优势,结合ML强大的模式识别能力,提升了分类精度与鲁棒性,具有较强的实用价值。; 适合人群:电气工程、自动化、电力系统及其自动化等相关专业的研究生、科研人员及从事电能质量监测与分析的工程技术人员;具备一定的信号处理基础和Matlab编程能力者更佳。; 使用场景及目标:①应用于智能电网中的电能质量在线监测系统,实现扰动类型的自动识别;②作为高校或科研机构在信号处理、模式识别、电力系统分析等课程的教学案例或科研实验平台;③目标是提高电能质量扰动分类的准确性与效率,为后续的电能治理与设备保护提供决策依据。; 阅读建议:建议读者结合Matlab代码深入理解DWT的实现过程与特征提取步骤,重点关注小波基选择、分解层数设定及特征向量构造对分类性能的影响,并尝试对比不同机器学习模型的分类效果,以全面掌握该方法的核心技术要点。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值