一、模型理解
本次介绍的主要为BP神经网络,是ANN(Artifical Neural Networks)神经网络中的一种。BP即为前馈的意思,即输入节点只跟前边的隐藏层或者输出节点向前发生关系。这是一种预测模型,能根据已有的学习集训练出模型,根据预测集中的x1,x2,x3预测Y的值。
在下边的博客中,详细介绍了BP神经网络的算法:
https://blog.youkuaiyun.com/google19890102/article/details/32723459
其中,我们需要注意的关键术语有:输入层、隐藏层、输出层;权重、偏置、激励函数、学习速率;误差、权值更新、偏置更新
二、R语言调用实现案例
首先我们拿到的数据集如下:
X1 | X2 | X3 | Y |
1 | 0 | 0 | -1 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 |
0 | 0 | 1 | -1 |
0 | 1 | 0 | -1 |
0 | 1 | 1 | 1 |