A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex of the set. Now given a graph with several vertex sets, you are supposed to tell if each of them is a vertex cover or not.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N and M (both no more than 104), being the total numbers of vertices and the edges, respectively. Then M lines follow, each describes an edge by giving the indices (from 0 to N-1) of the two ends of the edge.
After the graph, a positive integer K (<= 100) is given, which is the number of queries. Then K lines of queries follow, each in the format:
Nv v[1] v[2] ... v[Nv]
where Nv is the number of vertices in the set, and v[i]'s are the indices of the vertices.
Output Specification:
For each query, print in a line "Yes" if the set is a vertex cover, or "No" if not.
Sample Input:10 11 8 7 6 8 4 5 8 4 8 1 1 2 1 4 9 8 9 1 1 0 2 4 5 4 0 3 8 4 6 6 1 7 5 4 9 3 1 8 4 2 2 8 7 9 8 7 6 5 4 2Sample Output:
No Yes Yes No No
#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
#include <functional>
using namespace std;
struct edge
{
int u,w;
edge(int x,int y):u(x),w(y){}
};
vector<edge> v;
int main()
{
int n,m;
cin>>n>>m;
for(int i=0;i<m;++i)
{
int u,w;
cin>>u>>w;
v.push_back(edge(u,w));
}
int k;
cin>>k;
while(k--)
{
int num,visit[10000]={0},ret=1,idx;
set<int> s;
cin>>num;
for(int i=0;i<num;++i)
{
cin>>idx;
s.insert(idx);
}
for(auto x:v)
{
if(visit[x.u]||visit[x.w]) continue;//以及在集合里,直接跳过
if(s.find(x.u)!=s.end()) visit[x.u]=1;
else if(s.find(x.w)!=s.end()) visit[x.w]=1;
else {ret=0;break;}
}
ret==1?cout<<"Yes\n":cout<<"No\n";
}
return 0;
}

本文介绍了一种算法,用于判断给定的顶点集合是否为一张图的顶点覆盖。通过对图中每条边的两个顶点进行检查,确认它们是否至少有一个属于指定的顶点集,从而实现高效验证。

被折叠的 条评论
为什么被折叠?



