最大子数组
输入:包含负数的数组
输出:找出和为最大的连续子数组
分治策略求解最大子数组
假定寻找A[low…high]的最大子数组,我们将A数组拆分成规模尽量相等的两个子数组,A[low…mid] 、A[mid+1…high].
A数组的任何子数组A[i…j]必然是以下情况之一
-
完全位于A[low…mid]中,low ≤ i ≤ j ≤ mid
-
完全位于A[mid…high]中,mid < i ≤ j ≤ high
-
跨越中点,low ≤ i ≤ j ≤ high
A数组的最大子数组必然是上述三种情况之一。求A[low…mid] 、A[mid+1…high]两个子数组的最大子数组,依然是最大子数组问题,
只是规模更小,因此剩下的工作就是寻找跨越中点的最大子数组,然后在三种情况中选取和最大值
我们可以在线性时间内求出跨越中点的最大子数组,此问题不是原问题规模更小的实例,其加入了限制,必须是跨越中点。任何跨越中点的
子数组都是由A[i…mid]和A[mid + 1…j]组成,其中low ≤ i ≤ mid且mid < j ≤ high.查找跨越中点最大子数组算法伪代码如下
find-max-crossing-subarray(A, low, mid, high)
1 left-sume = -∞
2 sum = 0
3 for i = mid downto low
4 sum = sum + A[i]
5 if sum > left-sum
6 left-sum = sum
7 max-left = i
8 right-sum = -∞
9 sum = 0
10 for j = mid + 1 to high
11 sum = sum + A[j]
12 if sum > right-sum
13 right-sum = sum
14 max-right = j
15 return (max-left, max-right, left-sum + right-sum)
第1-7行计算左部分数组最大子数组,第8-14行计算右部分数组最大子数组。返回跨越中点子数组的边界,及最大子数组的和。
find-max-crossing-subarray(A, low, mid, high)包含两个单层for循环其时间复杂度为θ(n)
求解最大子数组的分治算法伪代码如下
find-maximum-subarray(A, low, high)
1 if high == low
2 return (low, high, A[low])
3 else mid = └(low + high)/2┘
4 (left-low, left-high, left-sum) = find-maximum-subarray(A, low, mid)
5 (right-low, right-high, right-sum) = find-maximum-subarray(A, mid + 1, high)
6 (cross-low, cross-high, cross-sum) = find-maximum-subarray(A, low, mid, high)
7 if left-sum ≥ right-sum and left-sum ≥ cross-sum
8 return (left-low, left-high, left-sum)
9 elseif right-sum ≥ left-sum and right-sum ≥ cross-sum
10 return (right-low, right-high, right-sum)
11 else return (cross-low, cross-high, cross-sum)
Java 实现算法
- 添加返回对象
package com.aim.algorithm.subarray.entity;
public class MaximumSubarray {
private Integer startIndex;
private Integer endIndex;
private Integer sum;
public MaximumSubarray(){}
public MaximumSubarray(int low, int high, int sum) {
this.startIndex = low;
this.endIndex = high;
this.sum = sum;
}
public Integer getStartIndex() {
return startIndex;
}
public void setStartIndex(Integer startIndex) {
this.startIndex = startIndex;
}
public Integer getEndIndex() {
return endIndex;
}
public void setEndIndex(Integer endIndex) {
this.endIndex = endIndex;
}
public Integer getSum() {
return sum;
}
public void setSum(Integer sum) {
this.sum = sum;
}
@Override
public String toString() {
return "MaximumSubarray{" +
"startIndex=" + startIndex +
", endIndex=" + endIndex +
", sum=" + sum +
'}';
}
}
- 添加查找最大子数组接口MaximumSubarrayService
package com.aim.algorithm.subarray.serviece;
import com.aim.algorithm.subarray.entity.MaximumSubarray;
public interface MaximumSubarrayService {
/**
* 查找最大子数组
* @param input
* @return
*/
MaximumSubarray findMaximumSubarray(int[] input);
}
- 实现MaximumSubarrayService查找最大子数组
package com.aim.algorithm.subarray.serviece.impl;
import com.aim.algorithm.subarray.entity.MaximumSubarray;
import com.aim.algorithm.subarray.serviece.MaximumSubarrayService;
public class MaximumSubarrayServiceImpl implements MaximumSubarrayService {
public MaximumSubarray findMaximumSubarray(int[] input) {
return findMaximumSubarray(input, 0, input.length - 1);
}
public MaximumSubarray findMaximumSubarray(int[] input, int low, int high) {
if (high == low) {
return new MaximumSubarray(low, high, input[low]);
} else {
int mid = Math.floorDiv(low + high, 2);
MaximumSubarray leftMaximumSubarray = findMaximumSubarray(input, low, mid);
MaximumSubarray rightMaximumSubarray = findMaximumSubarray(input, mid + 1, high);
MaximumSubarray crossMaximumSubarray = findMaxCrossingSubarray(input, low, mid, high);
if (leftMaximumSubarray.getSum() > rightMaximumSubarray.getSum()
&& leftMaximumSubarray.getSum() > crossMaximumSubarray.getSum()) {
return leftMaximumSubarray;
} else if (rightMaximumSubarray.getSum() > leftMaximumSubarray.getSum()
&& rightMaximumSubarray.getSum() > crossMaximumSubarray.getSum()) {
return rightMaximumSubarray;
} else {
return crossMaximumSubarray;
}
}
}
private MaximumSubarray findMaxCrossingSubarray(int[] input, int low, int mid, int high) {
int leftSum = Integer.MIN_VALUE;
int sum = 0;
int maxLeft = -1;
for (int i = mid; i >= low; i--) {
sum += input[i];
if (sum > leftSum) {
leftSum = sum;
maxLeft = i;
}
}
int rightSum = Integer.MIN_VALUE;
int maxRight = -1;
sum = 0;
for (int j = mid + 1; j <= high; j++) {
sum += input[j];
if (sum > rightSum) {
rightSum = sum;
maxRight = j;
}
}
return new MaximumSubarray(maxLeft, maxRight, leftSum + rightSum);
}
}
- 添加测试类
package com.aim.algorithm.subarray;
import com.aim.algorithm.subarray.entity.MaximumSubarray;
import com.aim.algorithm.subarray.serviece.MaximumSubarrayService;
import com.aim.algorithm.subarray.serviece.impl.MaximumSubarrayServiceImpl;
import org.apache.logging.log4j.util.Strings;
import org.junit.Test;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.Scanner;
public class MaximumSubarrayTest {
private static MaximumSubarrayService maximumSubarrayService = new MaximumSubarrayServiceImpl();
public static void main(String[] args) throws IOException {
findMaximumSubarray();
}
public static void findMaximumSubarray() throws IOException {
Scanner scan = new Scanner(System.in);
System.out.println("请输入要排序数组");
String arrayStr = scan.nextLine();
while (Strings.isBlank(arrayStr)) {
System.out.println("请输入要排序数组");
arrayStr = scan.nextLine();
}
String[] arrays = arrayStr.split(" ");
int[] input = Arrays.stream(arrays).mapToInt(array -> Integer.valueOf(array)).toArray();
MaximumSubarray maximumSubarray = maximumSubarrayService.findMaximumSubarray(input);
System.out.println(maximumSubarray.toString());
}
}
算法性能分析
简化问题,假设原问题的规模为2的幂,所有子问题的规模都是整数,用T(n)表示findMaximumSubarray求解n个元素的最大子数组的运行时间。对于n = 1
的情况,第1、2行花费常量时间T(1) = θ(1).当n > 1,第1、3行花费常量时间,第4、5行求解的子数组均为n/2个元素的子数组,每个求解时间均为T(n/2)。
我们需要求解两个子数组,总运行时间为2T(n/2)。第6行调用findMaxCrossingSubarray花费θ(n)。第7~11行花费常量时间。因此整个寻找最大子数组
算法的运行时间T(n)为
T(n)={θ(1)2T(n/2)+θ(n) T(n) = \left\{ \begin{aligned} θ(1)\\ 2T(n/2) + θ(n) \end{aligned} \right.T(n)={θ(1)2T(n/2)+θ(n)
因此其时间复杂度为T(n) = θ(nlgn)
1178

被折叠的 条评论
为什么被折叠?



