原文链接:https://blog.youkuaiyun.com/www_jun/article/details/52483831
程序化广告交易中的点击率预估
指标
广告点击率预估是程序化广告交易框架的非常重要的组件,点击率预估主要有两个层次的指标:
1. 排序指标。排序指标是最基本的指标,它决定了我们有没有能力把最合适的广告找出来去呈现给最合适的用户。这个是变现的基础,从技术上,我们用AUC来度量。
2. 数值指标。数值指标是进一步的指标,是竞价环节进一步优化的基础,一般DSP比较看中这个指标。如果我们对CTR普遍低估,我们出价会相对保守,从而使得预算花不出去或是花得太慢;如果我们对CTR普遍高估,我们的出价会相对激进,从而导致CPC太高。从技术上,我们有Facebook的NE(Normalized Entropy)还可以用OE(Observation Over Expectation)。

框架
工业界用得比较多的是基于LR的点击率预估策略,我觉得这其中一个重要的原因是可解释性,当出现bad case时越简单的模型越好debug,越可解释,也就越可以有针对性地对这种bad case做改善。但虽然如此,我见到的做广告的算法工程师,很少有利用LR的这种好处做模型改善的,遗憾….. 最近DNN很热,百度宣布DNN做CTR预估相比LR产生了20%的benefit,我不知道比较的benchmark,但就机理上来讲如果说DNN比原本传统的人工feature engineering的LR高20%,我一点也不奇怪。但如果跟现在增加了FM和GBDT的自动高阶特征生成的LR相比,我觉得DNN未必有什么优势。毕竟看透了,DNN用线性组合+非线性函数(tanh/sigmo

最低0.47元/天 解锁文章
1142

被折叠的 条评论
为什么被折叠?



