广告ctr预测逻辑分析

原文链接:https://blog.youkuaiyun.com/www_jun/article/details/52483831

 

程序化广告交易中的点击率预估 
指标

广告点击率预估是程序化广告交易框架的非常重要的组件,点击率预估主要有两个层次的指标:

 1. 排序指标。排序指标是最基本的指标,它决定了我们有没有能力把最合适的广告找出来去呈现给最合适的用户。这个是变现的基础,从技术上,我们用AUC来度量。

 2. 数值指标。数值指标是进一步的指标,是竞价环节进一步优化的基础,一般DSP比较看中这个指标。如果我们对CTR普遍低估,我们出价会相对保守,从而使得预算花不出去或是花得太慢;如果我们对CTR普遍高估,我们的出价会相对激进,从而导致CPC太高。从技术上,我们有Facebook的NE(Normalized Entropy)还可以用OE(Observation Over Expectation)。

这里写图片描述

框架

工业界用得比较多的是基于LR的点击率预估策略,我觉得这其中一个重要的原因是可解释性,当出现bad case时越简单的模型越好debug,越可解释,也就越可以有针对性地对这种bad case做改善。但虽然如此,我见到的做广告的算法工程师,很少有利用LR的这种好处做模型改善的,遗憾….. 最近DNN很热,百度宣布DNN做CTR预估相比LR产生了20%的benefit,我不知道比较的benchmark,但就机理上来讲如果说DNN比原本传统的人工feature engineering的LR高20%,我一点也不奇怪。但如果跟现在增加了FM和GBDT的自动高阶特征生成的LR相比,我觉得DNN未必有什么优势。毕竟看透了,DNN用线性组合+非线性函数(tanh/sigmo

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值