一 基本介绍
// 1 程序的第一行 #include <stdio.h> 是预处理器指令,告诉 C 编译器在实际编译之前要包含 stdio.h 文件。
#include <stdio.h>
// 2 程序从main 函数这里开始执行
/**
int main(int argc, const char * argv[]) {
// insert code here...
printf("Hello, World!\n");
return 0;
}
*/
// 3 键入 gcc hello.c,输入回车,编译代码。
// 4 如果代码中没有错误,命令提示符会跳到下一行,并生成 a.out 可执行文件。
// 5 命令行输入 ./a.out 执行文件 输出结果
二 指令
// 1 C 程序中,分号是语句结束符。也就是说,每个语句必须以分号结束。它表明一个逻辑实体的结束。
// 2 C 语言有两种注释方式:以 // 开始的单行注释,这种注释可以单独占一行。
// /* */ 这种格式的注释可以单行或多行。
// 3 标识符
// C 标识符是用来标识变量、函数,或任何其他用户自定义项目的名称。一个标识符以字母 A-Z 或 a-z 或下划线 _ 开始,后跟零个或多个字母、下划线和数字(0-9)。C 标识符内不允许出现标点字符,比如 @、$ 和 %。C 是区分大小写的编程语言。因此,在 C 中,Manpower 和 manpower 是两个不同的标识符。
// 4 关键字
// 这些保留字不能作为常量名、变量名或其他标识符名称。
// 5 空格
// 只包含空格的行,被称为空白行,可能带有注释,C 编译器会完全忽略它。在 C 中,空格用于描述空白符、制表符、换行符和注释。空格分隔语句的各个部分,让编译器能识别语句中的某个元素(比如 int)在哪里结束,下一个元素在哪里开始。
| 关键字 | 说明 |
|---|---|
| auto | 声明自动变量 |
| break | 跳出当前循环 |
| case | 开关语句分支 |
| char | 声明字符型变量或函数返回值类型 |
| const | 定义常量,如果一个变量被 const 修饰,那么它的值就不能再被改变 |
| continue | 结束当前循环,开始下一轮循环 |
| default | 开关语句中的"其它"分支 |
| do | 循环语句的循环体 |
| double | 声明双精度浮点型变量或函数返回值类型 |
| else | 条件语句否定分支(与 if 连用) |
| enum | 声明枚举类型 |
| extern | 声明变量或函数是在其它文件或本文件的其他位置定义 |
| float | 声明浮点型变量或函数返回值类型 |
| for | 一种循环语句 |
| goto | 无条件跳转语句 |
| if | 条件语句 |
| int | 声明整型变量或函数 |
| long | 声明长整型变量或函数返回值类型 |
| register | 声明寄存器变量 |
| return | 子程序返回语句(可以带参数,也可不带参数) |
| short | 声明短整型变量或函数 |
| signed | 声明有符号类型变量或函数 |
| sizeof | 计算数据类型或变量长度(即所占字节数) |
| static | 声明静态变量 |
| struct | 声明结构体类型 |
| switch | 用于开关语句 |
| typedef | 用以给数据类型取别名 |
| unsigned | 声明无符号类型变量或函数 |
| union | 声明共用体类型 |
| void | 声明函数无返回值或无参数,声明无类型指针 |
| volatile | 说明变量在程序执行中可被隐含地改变 |
| while | 循环语句的循环条件 |
C99 新增关键字
_Bool | _Complex | _Imaginary | inline | restrict |
|---|---|---|---|---|
C11 新增关键字
_Alignas | _Alignof | _Atomic | _Generic | _Noreturn |
|---|---|---|---|---|
_Static_assert | _Thread_local |
三 数据类型
在 C 语言中,数据类型指的是用于声明不同类型的变量或函数的一个广泛的系统。变量的类型决定了变量存储占用的空间,以及如何解释存储的位模式。
C 中的类型可分为以下几种:
| 序号 | 类型与描述 |
|---|---|
| 1 | 基本类型: 它们是算术类型,包括两种类型:整数类型和浮点类型。 |
| 2 | 枚举类型: 它们也是算术类型,被用来定义在程序中只能赋予其一定的离散整数值的变量。 |
| 3 | void 类型: 类型说明符 void 表明没有可用的值。 |
| 4 | 派生类型: 它们包括:指针类型、数组类型、结构类型、共用体类型和函数类型。 |
数组类型和结构类型统称为聚合类型。函数的类型指的是函数返回值的类型。在本章节接下来的部分我们将介绍基本类型,其他几种类型会在后边几个章节中进行讲解。
整数类型
下表列出了关于标准整数类型的存储大小和值范围的细节:
| 类型 | 存储大小 | 值范围 |
|---|---|---|
| char | 1 字节 | -128 到 127 或 0 到 255 |
| unsigned char | 1 字节 | 0 到 255 |
| signed char | 1 字节 | -128 到 127 |
| int | 2 或 4 字节 | -32,768 到 32,767 或 -2,147,483,648 到 2,147,483,647 |
| unsigned int | 2 或 4 字节 | 0 到 65,535 或 0 到 4,294,967,295 |
| short | 2 字节 | -32,768 到 32,767 |
| unsigned short | 2 字节 | 0 到 65,535 |
| long | 4 字节 | -2,147,483,648 到 2,147,483,647 |
| unsigned long | 4 字节 | 0 到 4,294,967,295 |
为了得到某个类型或某个变量在特定平台上的准确大小,您可以使用 sizeof 运算符。表达式 sizeof(type) 得到对象或类型的存储字节大小。下面的实例演示了获取 int 类型的大小:
int main(int argc, const char * argv[]) {
// insert code here...
printf("int 存储大小 : %lu \n", sizeof(int));
return 0;
}
浮点类型
下表列出了关于标准浮点类型的存储大小、值范围和精度的细节:
| 类型 | 存储大小 | 值范围 | 精度 |
|---|---|---|---|
| float | 4 字节 | 1.2E-38 到 3.4E+38 | 6 位小数 |
| double | 8 字节 | 2.3E-308 到 1.7E+308 | 15 位小数 |
| long double | 16 字节 | 3.4E-4932 到 1.1E+4932 | 19 位小数 |
#include <stdio.h>
#include <float.h>
int main()
{
printf("float 存储最大字节数 : %lu \n", sizeof(float));
printf("float 最小值: %E\n", FLT_MIN );
printf("float 最大值: %E\n", FLT_MAX );
printf("精度值: %d\n", FLT_DIG );
return 0;
}
void 类型
void 类型指定没有可用的值。它通常用于以下三种情况下:
| 序号 | 类型与描述 |
|---|---|
| 1 | 函数返回为空 C 中有各种函数都不返回值,或者您可以说它们返回空。不返回值的函数的返回类型为空。例如 void exit (int status); |
| 2 | 函数参数为空 C 中有各种函数不接受任何参数。不带参数的函数可以接受一个 void。例如 int rand(void); |
| 3 | 指针指向 void 类型为 void * 的指针代表对象的地址,而不是类型。例如,内存分配函数 void *malloc( size_t size ); 返回指向 void 的指针,可以转换为任何数据类型。 |
数据转换
数据类型转换:C 语言中如果一个表达式中含有不同类型的常量和变量,在计算时,会将它们自动转换为同一种类型;在 C 语言中也可以对数据类型进行强制转换;
2、自动转换规则:
- a)浮点数赋给整型,该浮点数小数被舍去;
- b)整数赋给浮点型,数值不变,但是被存储到相应的浮点型变量中;
3、强制类型转换形式: (类型说明符)(表达式)
#include<stdio.h>
int main()
{
float f,x=3.6,y=5.2;
int i=4,a,b;
a=x+y;
b=(int)(x+y);
f=10/i;
printf("a=%d,b=%d,f=%f,x=%f\n",a,b,f,x);
}
四 变量
变量其实只不过是程序可操作的存储区的名称。C 中每个变量都有特定的类型,类型决定了变量存储的大小和布局,该范围内的值都可以存储在内存中,运算符可应用于变量上。
变量的名称可以由字母、数字和下划线字符组成。它必须以字母或下划线开头。大写字母和小写字母是不同的,因为 C 是大小写敏感的。基于前一章讲解的基本类型,有以下几种基本的变量类型:
| 类型 | 描述 |
|---|---|
| char | 通常是一个字节(八位)。这是一个整数类型。 |
| int | 对机器而言,整数的最自然的大小。 |
| float | 单精度浮点值。单精度是这样的格式,1位符号,8位指数,23位小数。![]() |
| double | 双精度浮点值。双精度是1位符号,11位指数,52位小数。![]() |
| void | 表示类型的缺失。 |
1 变量定义
变量定义就是告诉编译器在何处创建变量的存储,以及如何创建变量的存储。变量定义指定一个数据类型,并包含了该类型的一个或多个变量的列表
type variable_list;
// type 必须是一个有效的 C 数据类型,可以是 char、w_char、int、float、double 或任何用户自定义的对象,variable_list 可以由一个或多个标识符名称组成,多个标识符之间用逗号分隔。下面列出几个有效的声明:
int i, j, k;
char c, ch;
float f, salary;
double d;
extern int d = 3, f = 5; // d 和 f 的声明与初始化
int d = 3, f = 5; // 定义并初始化 d 和 f
byte z = 22; // 定义并初始化 z
char x = 'x'; // 变量 x 的值为 'x'
2 变量声明
变量声明向编译器保证变量以指定的类型和名称存在,这样编译器在不需要知道变量完整细节的情况下也能继续进一步的编译。变量声明只在编译时有它的意义,在程序连接时编译器需要实际的变量声明。
变量的声明有两种情况:
- 1、一种是需要建立存储空间的。例如:int a 在声明的时候就已经建立了存储空间。
- 2、另一种是不需要建立存储空间的,通过使用extern关键字声明变量名而不定义它。 例如:extern int a 其中变量 a 可以在别的文件中定义的。
- 除非有extern关键字,否则都是变量的定义。
extern int i; //声明,不是定义
int i; //声明,也是定义
3 举例
int a,b;
int addNum()
{
// 函数内部声明a 和 b为外部变量
extern int a,b;
// 给全局变量赋值
a = 1;
b = 2;
return a+b;
}
int main(int argc, const char * argv[]) {
int res = addNum();
printf("%d\n",res);
return 0;
}
4 举例
test.c
#include <stdio.h>
extern int a,b;
int addNum()
{
return a+b;
}
main.c
int a = 1,b=20;
extern int addNum();
int main(int argc, const char * argv[]) {
int res = addNum();
printf("%d\n",res);
return 0;
}
五 常量
常量是固定值,在程序执行期间不会改变。这些固定的值,又叫做字面量。
常量可以是任何的基本数据类型,比如整数常量、浮点常量、字符常量,或字符串字面值,也有枚举常量。
常量就像是常规的变量,只不过常量的值在定义后不能进行修改。
1 整数常量
整数常量可以是十进制、八进制或十六进制的常量。前缀指定基数:0x 或 0X 表示十六进制,0 表示八进制,不带前缀则默认表示十进制。
整数常量也可以带一个后缀,后缀是 U 和 L 的组合,U 表示无符号整数(unsigned),L 表示长整数(long)。后缀可以是大写,也可以是小写,U 和 L 的顺序任意。
212 /* 合法的 */
215u /* 合法的 */
0xFeeL /* 合法的 */
078 /* 非法的:8 不是八进制的数字 */
032UU /* 非法的:不能重复后缀 */
85 /* 十进制 */
0213 /* 八进制 */
0x4b /* 十六进制 */
30 /* 整数 */
30u /* 无符号整数 */
30l /* 长整数 */
30ul /* 无符号长整数 */
2 浮点常量
浮点常量由整数部分、小数点、小数部分和指数部分组成。您可以使用小数形式或者指数形式来表示浮点常量。
当使用小数形式表示时,必须包含整数部分、小数部分,或同时包含两者。当使用指数形式表示时, 必须包含小数点、指数,或同时包含两者。带符号的指数是用 e 或 E 引入的。
下面列举几个浮点常量的实例:
3.14159 /* 合法的 */
314159E-5L /* 合法的 */
510E /* 非法的:不完整的指数 */
210f /* 非法的:没有小数或指数 */
.e55 /* 非法的:缺少整数或分数 */
3 字符常量
字符常量是括在单引号中,例如,‘x’ 可以存储在 char 类型的简单变量中。
字符常量可以是一个普通的字符(例如 ‘x’)、一个转义序列(例如 ‘\t’),或一个通用的字符(例如 ‘\u02C0’)。
在 C 中,有一些特定的字符,当它们前面有反斜杠时,它们就具有特殊的含义,被用来表示如换行符(\n)或制表符(\t)等。下表列出了一些这样的转义序列码:
| 转义序列 | 含义 |
|---|---|
| \ | \ 字符 |
| ’ | ’ 字符 |
| " | " 字符 |
| ? | ? 字符 |
| \a | 警报铃声 |
| \b | 退格键 |
| \f | 换页符 |
| \n | 换行符 |
| \r | 回车 |
| \t | 水平制表符 |
| \v | 垂直制表符 |
| \ooo | 一到三位的八进制数 |
| \xhh . . . | 一个或多个数字的十六进制数 |
4 字符串常量
字符串字面值或常量是括在双引号 “” 中的。一个字符串包含类似于字符常量的字符:普通的字符、转义序列和通用的字符。
您可以使用空格做分隔符,把一个很长的字符串常量进行分行。
下面的实例显示了一些字符串常量。下面这三种形式所显示的字符串是相同的。
5 定义常量
在 C 中,有两种简单的定义常量的方式:
- 使用 #define 预处理器。
- 使用 const 关键字。
#define 预处理器
下面是使用 #define 预处理器定义常量的形式:
// #define identifier value
#include <stdio.h>
#define LENGTH 10
#define WIDTH 5
#define NEWLINE '\n'
int main()
{
int area;
area = LENGTH * WIDTH;
printf("value of area : %d", area);
printf("%c", NEWLINE);
return 0;
}
const 关键字
您可以使用 const 前缀声明指定类型的常量,如下所示:
// const type variable = value;
#include <stdio.h>
int main()
{
const int LENGTH = 10;
const int WIDTH = 5;
const char NEWLINE = '\n';
int area;
area = LENGTH * WIDTH;
printf("value of area : %d", area);
printf("%c", NEWLINE);
return 0;
}
六 存储类
1 auto 存储类
auto 存储类是所有局部变量默认的存储类。
{
int mount;
auto int month;
}
2 register 存储类
register 存储类用于定义存储在寄存器中而不是 RAM 中的局部变量。这意味着变量的最大尺寸等于寄存器的大小(通常是一个词),且不能对它应用一元的 ‘&’ 运算符(因为它没有内存位置)。
{
register int miles;
}
寄存器只用于需要快速访问的变量,比如计数器。还应注意的是,定义 ‘register’ 并不意味着变量将被存储在寄存器中,它意味着变量可能存储在寄存器中,这取决于硬件和实现的限制。
3 static 存储类
static 存储类指示编译器在程序的生命周期内保持局部变量的存在,而不需要在每次它进入和离开作用域时进行创建和销毁。因此,使用 static 修饰局部变量可以在函数调用之间保持局部变量的值。
static 修饰符也可以应用于全局变量。当 static 修饰全局变量时,会使变量的作用域限制在声明它的文件内。
全局声明的一个 static 变量或方法可以被任何函数或方法调用,只要这些方法出现在跟 static 变量或方法同一个文件中。
以下实例演示了 static 修饰全局变量和局部变量的应用:
/// 函数声明
void func1(void);
static int count = 10;
int main(int argc, const char * argv[]) {
while (count --) {
func1();
}
return 0;
}
void func1(void)
{
// 每次调用函数 a的值不会被重置
static int a = 5;
a ++;
printf("a=%d,const=%d\n",a,count);
}
4 extern 存储类
extern 存储类用于提供一个全局变量的引用,全局变量对所有的程序文件都是可见的。当您使用 extern 时,对于无法初始化的变量,会把变量名指向一个之前定义过的存储位置。
当您有多个文件且定义了一个可以在其他文件中使用的全局变量或函数时,可以在其他文件中使用 extern 来得到已定义的变量或函数的引用。可以这么理解,extern 是用来在另一个文件中声明一个全局变量或函数。
extern 修饰符通常用于当有两个或多个文件共享相同的全局变量或函数的时候,如下所示:
main.c
int count;
extern void write_extern(void);
int main(int argc, const char * argv[]) {
count = 1515;
write_extern();
return 0;
}
test.c
extern int count;
void write_extern(void){
printf("count==%d\n",count);
}
七 运算符
运算符是一种告诉编译器执行特定的数学或逻辑操作的符号。C 语言内置了丰富的运算符,并提供了以下类型的运算符:
- 算术运算符
- 关系运算符
- 逻辑运算符
- 位运算符
- 赋值运算符
- 杂项运算符
1 算术运算符
下表显示了 C 语言支持的所有算术运算符。假设变量 A 的值为 10,变量 B 的值为 20,则:
| 运算符 | 描述 | 实例 |
|---|---|---|
| + | 把两个操作数相加 | A + B 将得到 30 |
| - | 从第一个操作数中减去第二个操作数 | A - B 将得到 -10 |
| * | 把两个操作数相乘 | A * B 将得到 200 |
| / | 分子除以分母 | B / A 将得到 2 |
| % | 取模运算符,整除后的余数 | B % A 将得到 0 |
| ++ | 自增运算符,整数值增加 1 | A++ 将得到 11 |
| – | 自减运算符,整数值减少 1 | A-- 将得到 9 |
a++ 和 ++a的区别
int main(int argc, const char * argv[]) {
int c;
int a = 10;
// c 是先等于a,而后a再自己执行++操作,先赋值后运算
c = a++;
printf("先赋值后运算:\n");
// 先赋值后运算:
// Line 1 - c 的值是 10
// Line 2 - a 的值是 11
printf("Line 1 - c 的值是 %d\n", c );
printf("Line 2 - a 的值是 %d\n", a );
printf("先运算后赋值:\n");
a = 10;
// a本身先进行运算,而后再将值赋值给c
c = ++a;
// Line 5 - c 的值是 11
// Line 6 - a 的值是 11
printf("Line 5 - c 的值是 %d\n", c );
printf("Line 6 - a 的值是 %d\n", a );
return 0;
}
2 逻辑运算符
下表显示了 C 语言支持的所有关系逻辑运算符。假设变量 A 的值为 1,变量 B 的值为 0,则:
| 运算符 | 描述 | 实例 |
|---|---|---|
| && | 称为逻辑与运算符。如果两个操作数都非零,则条件为真。 | (A && B) 为假。 |
| || | 称为逻辑或运算符。如果两个操作数中有任意一个非零,则条件为真。 | (A || B) 为真。 |
| ! | 称为逻辑非运算符。用来逆转操作数的逻辑状态。如果条件为真则逻辑非运算符将使其为假。 | !(A && B) 为真。 |
3 位运算符
位运算符作用于位,并逐位执行操作。&、 | 和 ^ 的真值表如下所示:
| p | q | p & q | p | q | p ^ q |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 |
假设如果 A = 60,且 B = 13,现在以二进制格式表示,它们如下所示:
A = 0011 1100
B = 0000 1101
-----------------
A&B = 0000 1100
A|B = 0011 1101
A^B = 0011 0001
~A = 1100 0011
下表显示了 C 语言支持的位运算符。假设变量 A 的值为 60,变量 B 的值为 13,则:
| 运算符 | 描述 | 实例 |
|---|---|---|
| & | 按位与操作,按二进制位进行"与"运算。运算规则:0&0=0; 0&1=0; 1&0=0; 1&1=1; | (A & B) 将得到 12,即为 0000 1100 |
| | | 按位或运算符,按二进制位进行"或"运算。运算规则:0|0=0; 0|1=1; 1|0=1; 1|1=1; | (A | B) 将得到 61,即为 0011 1101 |
| ^ | 异或运算符,按二进制位进行"异或"运算。运算规则:0^0=0; 0^1=1; 1^0=1; 1^1=0; | (A ^ B) 将得到 49,即为 0011 0001 |
| ~ | 取反运算符,按二进制位进行"取反"运算。运算规则:~1=0; ~0=1; | (~A ) 将得到 -61,即为 1100 0011,一个有符号二进制数的补码形式。 |
| << | 二进制左移运算符。将一个运算对象的各二进制位全部左移若干位(左边的二进制位丢弃,右边补0)。 | A << 2 将得到 240,即为 1111 0000 |
| >> | 二进制右移运算符。将一个数的各二进制位全部右移若干位,正数左补0,负数左补1,右边丢弃。 | A >> 2 将得到 15,即为 0000 1111 |
int main(int argc, const char * argv[]) {
unsigned int a = 60; /* 60 = 0011 1100 */
unsigned int b = 13; /* 13 = 0000 1101 */
int c = 0;
c = a & b; /* 12 = 0000 1100 */
printf("Line 1 - c 的值是 %d\n", c );
c = a | b; /* 61 = 0011 1101 */
printf("Line 2 - c 的值是 %d\n", c );
c = a ^ b; /* 49 = 0011 0001 */
printf("Line 3 - c 的值是 %d\n", c );
c = ~a; /*-61 = 1100 0011 */
printf("Line 4 - c 的值是 %d\n", c );
c = a << 2; /* 240 = 1111 0000 */
printf("Line 5 - c 的值是 %d\n", c );
c = a >> 2; /* 15 = 0000 1111 */
printf("Line 6 - c 的值是 %d\n", c );
return 0;
}
4 赋值运算符
下表列出了 C 语言支持的赋值运算符:
| 运算符 | 描述 | 实例 |
|---|---|---|
| = | 简单的赋值运算符,把右边操作数的值赋给左边操作数 | C = A + B 将把 A + B 的值赋给 C |
| += | 加且赋值运算符,把右边操作数加上左边操作数的结果赋值给左边操作数 | C += A 相当于 C = C + A |
| -= | 减且赋值运算符,把左边操作数减去右边操作数的结果赋值给左边操作数 | C -= A 相当于 C = C - A |
| *= | 乘且赋值运算符,把右边操作数乘以左边操作数的结果赋值给左边操作数 | C *= A 相当于 C = C * A |
| /= | 除且赋值运算符,把左边操作数除以右边操作数的结果赋值给左边操作数 | C /= A 相当于 C = C / A |
| %= | 求模且赋值运算符,求两个操作数的模赋值给左边操作数 | C %= A 相当于 C = C % A |
| <<= | 左移且赋值运算符 | C <<= 2 等同于 C = C << 2 |
| >>= | 右移且赋值运算符 | C >>= 2 等同于 C = C >> 2 |
| &= | 按位与且赋值运算符 | C &= 2 等同于 C = C & 2 |
| ^= | 按位异或且赋值运算符 | C ^= 2 等同于 C = C ^ 2 |
| |= | 按位或且赋值运算符 | C |= 2 等同于 C = C | 2 |
#include <stdio.h>
int main()
{
int a = 21;
int c ;
c = a;
printf("Line 1 - = 运算符实例,c 的值 = %d\n", c );
c += a;
printf("Line 2 - += 运算符实例,c 的值 = %d\n", c );
c -= a;
printf("Line 3 - -= 运算符实例,c 的值 = %d\n", c );
c *= a;
printf("Line 4 - *= 运算符实例,c 的值 = %d\n", c );
c /= a;
printf("Line 5 - /= 运算符实例,c 的值 = %d\n", c );
c = 200;
c %= a;
printf("Line 6 - %%= 运算符实例,c 的值 = %d\n", c );
c <<= 2;
printf("Line 7 - <<= 运算符实例,c 的值 = %d\n", c );
c >>= 2;
printf("Line 8 - >>= 运算符实例,c 的值 = %d\n", c );
c &= 2;
printf("Line 9 - &= 运算符实例,c 的值 = %d\n", c );
c ^= 2;
printf("Line 10 - ^= 运算符实例,c 的值 = %d\n", c );
c |= 2;
printf("Line 11 - |= 运算符实例,c 的值 = %d\n", c );
}
5 杂项运算符 ↦ sizeof & 三元
下表列出了 C 语言支持的其他一些重要的运算符,包括 sizeof 和 ? :。
| 运算符 | 描述 | 实例 |
|---|---|---|
| sizeof() | 返回变量的大小。 | sizeof(a) 将返回 4,其中 a 是整数。 |
| & | 返回变量的地址。 | &a; 将给出变量的实际地址。 |
| * | 指向一个变量。 | *a; 将指向一个变量。 |
| ? : | 条件表达式 | 如果条件为真 ? 则值为 X : 否则值为 Y |
#include <stdio.h>
int main()
{
int a = 4;
short b;
double c;
int* ptr;
/* sizeof 运算符实例 */
printf("Line 1 - 变量 a 的大小 = %lu\n", sizeof(a) );
printf("Line 2 - 变量 b 的大小 = %lu\n", sizeof(b) );
printf("Line 3 - 变量 c 的大小 = %lu\n", sizeof(c) );
/* & 和 * 运算符实例 */
ptr = &a; /* 'ptr' 现在包含 'a' 的地址 */
printf("a 的值是 %d\n", a);
printf("*ptr 是 %d\n", *ptr);
/* 三元运算符实例 */
a = 10;
b = (a == 1) ? 20: 30;
printf( "b 的值是 %d\n", b );
b = (a == 10) ? 20: 30;
printf( "b 的值是 %d\n", b );
}
八 判断
判断结构要求程序员指定一个或多个要评估或测试的条件,以及条件为真时要执行的语句(必需的)和条件为假时要执行的语句(可选的)。
C 语言把任何非零和非空的值假定为 true,把零或 null 假定为 false。
下面是大多数编程语言中典型的判断结构的一般形式:
判断语句
C 语言提供了以下类型的判断语句。点击链接查看每个语句的细节。
| 语句 | 描述 |
|---|---|
| if 语句 | 一个 if 语句 由一个布尔表达式后跟一个或多个语句组成。 |
| if…else 语句 | 一个 if 语句 后可跟一个可选的 else 语句,else 语句在布尔表达式为假时执行。 |
| 嵌套 if 语句 | 您可以在一个 if 或 else if 语句内使用另一个 if 或 else if 语句。 |
| switch 语句 | 一个 switch 语句允许测试一个变量等于多个值时的情况。 |
| 嵌套 switch 语句 | 您可以在一个 switch 语句内使用另一个 switch 语句。 |
九 循环
有的时候,我们可能需要多次执行同一块代码。一般情况下,语句是按顺序执行的:函数中的第一个语句先执行,接着是第二个语句,依此类推。
编程语言提供了更为复杂执行路径的多种控制结构。
循环语句允许我们多次执行一个语句或语句组,下面是大多数编程语言中循环语句的流程图:
1 循环类型
C 语言提供了以下几种循环类型。点击链接查看每个类型的细节。
| 循环类型 | 描述 |
|---|---|
| while 循环 | 当给定条件为真时,重复语句或语句组。它会在执行循环主体之前测试条件。 |
| for 循环 | 多次执行一个语句序列,简化管理循环变量的代码。 |
| do…while 循环 | 除了它是在循环主体结尾测试条件外,其他与 while 语句类似。 |
| 嵌套循环 | 您可以在 while、for 或 do…while 循环内使用一个或多个循环。 |
2 循环控制语句
循环控制语句改变你代码的执行顺序。通过它你可以实现代码的跳转。
C 提供了下列的循环控制语句。点击链接查看每个语句的细节。
| 控制语句 | 描述 |
|---|---|
| break 语句 | 终止循环或 switch 语句,程序流将继续执行紧接着循环或 switch 的下一条语句。 |
| continue 语句 | 告诉一个循环体立刻停止本次循环迭代,重新开始下次循环迭代。 |
| goto 语句 | 将控制转移到被标记的语句。但是不建议在程序中使用 goto 语句。 |
十 函数
函数是一组一起执行一个任务的语句。每个 C 程序都至少有一个函数,即主函数 main() ,所有简单的程序都可以定义其他额外的函数。
您可以把代码划分到不同的函数中。如何划分代码到不同的函数中是由您来决定的,但在逻辑上,划分通常是根据每个函数执行一个特定的任务来进行的。
函数声明告诉编译器函数的名称、返回类型和参数。函数定义提供了函数的实际主体。
C 标准库提供了大量的程序可以调用的内置函数。例如,函数 strcat() 用来连接两个字符串,函数 memcpy() 用来复制内存到另一个位置。
1 定义函数
C 语言中的函数定义的一般形式如下:
return_type function_name( parameter list )
{
body of the function
}
在 C 语言中,函数由一个函数头和一个函数主体组成。下面列出一个函数的所有组成部分:
- **返回类型:**一个函数可以返回一个值。return_type 是函数返回的值的数据类型。有些函数执行所需的操作而不返回值,在这种情况下,return_type 是关键字 void。
- **函数名称:**这是函数的实际名称。函数名和参数列表一起构成了函数签名。
- **参数:**参数就像是占位符。当函数被调用时,您向参数传递一个值,这个值被称为实际参数。参数列表包括函数参数的类型、顺序、数量。参数是可选的,也就是说,函数可能不包含参数。
- **函数主体:**函数主体包含一组定义函数执行任务的语句。
int addNum(int a,int b){
return a+b;
}
int main()
{
printf("%d\n",addNum(2, 6));
}
2 内部函数
如果一个函数只能被本文件中其他函数所调用,它称为内部函数。在定义内部函数时,在函数名和函数类型的前面加 static,即
static 类型名 函数名 (形参表)
例如,函数的首行:
static int max(int a,int b)
内部函数又称静态函数。使用内部函数,可以使函数的作用域只局限于所在文件。即使在不同的文件中有同名的内部函数,也互不干扰。提高了程序的可靠性。
3 外部函数
如果在定义函数时,在函数的首部的最左端加关键字 extern,则此函数是外部函数,可供其它文件调用。
如函数首部可以为
extern int max (int a,int b)
C 语言规定,如果在定义函数时省略 extern,则默认为外部函数。
在需要调用此函数的其他文件中,需要对此函数作声明(不要忘记,即使在本文件中调用一个函数,也要用函数原型来声明)。在对此函数作声明时,要加关键字 extern,表示该函数是在其他文件中定义的外部函数。
十一 作用域
任何一种编程中,作用域是程序中定义的变量所存在的区域,超过该区域变量就不能被访问。C 语言中有三个地方可以声明变量:
- 在函数或块内部的局部变量
- 在所有函数外部的全局变量
- 在形式参数的函数参数定义中
1 局部变量
在某个函数或块的内部声明的变量称为局部变量。它们只能被该函数或该代码块内部的语句使用。局部变量在函数外部是不可知的。下面是使用局部变量的实例。在这里,所有的变量 a、b 和 c 是 main() 函数的局部变量。
2 全局变量
全局变量是定义在函数外部,通常是在程序的顶部。全局变量在整个程序生命周期内都是有效的,在任意的函数内部能访问全局变量。
全局变量可以被任何函数访问。也就是说,全局变量在声明后整个程序中都是可用的。下面是使用全局变量和局部变量的实例:
十二 数组
C 语言支持数组数据结构,它可以存储一个固定大小的相同类型元素的顺序集合。数组是用来存储一系列数据,但它往往被认为是一系列相同类型的变量。
数组的声明并不是声明一个个单独的变量,比如 number0、number1、…、number99,而是声明一个数组变量,比如 numbers,然后使用 numbers[0]、numbers[1]、…、numbers[99] 来代表一个个单独的变量。数组中的特定元素可以通过索引访问。
所有的数组都是由连续的内存位置组成。最低的地址对应第一个元素,最高的地址对应最后一个元素。

1 声明数组
在 C 中要声明一个数组,需要指定元素的类型和元素的数量,如下所示:
type arrayName [ arraySize ];
这叫做一维数组。arraySize 必须是一个大于零的整数常量,type 可以是任意有效的 C 数据类型。例如,要声明一个类型为 double 的包含 10 个元素的数组 balance,声明语句如下:
double balance[10];
现在 balance 是一个可用的数组,可以容纳 10 个类型为 double 的数字。
2 初始化数组
在 C 中,您可以逐个初始化数组,也可以使用一个初始化语句,如下所示:
double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};
大括号 { } 之间的值的数目不能大于我们在数组声明时在方括号 [ ] 中指定的元素数目。
如果您省略掉了数组的大小,数组的大小则为初始化时元素的个数。因此,如果:
double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};
您将创建一个数组,它与前一个实例中所创建的数组是完全相同的。下面是一个为数组中某个元素赋值的实例:
balance[4] = 50.0;
述的语句把数组中第五个元素的值赋为 50.0。所有的数组都是以 0 作为它们第一个元素的索引,也被称为基索引,数组的最后一个索引是数组的总大小减去 1。以下是上面所讨论的数组的的图形表示:

int main()
{
int a[] = {1,2,3,4,5};
printf("%d\n%d\n%d\n%d\n%d\n",a[0],a[1],a[2],a[3],a[4]);
// 二维数组
int b[3][3] = {{1,4,7},{2,5,8},{3,6,9}};
// 三维数组
int c[1][2][3] = {{{1,4,7},{2,5,8}}};
// 内联括号可以d省略
int d[3][3] = {1,2,3,4,5,6,7,8,9};
printf("%d\n",c[0][1][2]);
printf("%d\n",d[2][2]);
}
十三 枚举
枚举是 C 语言中的一种基本数据类型,它可以让数据更简洁,更易读。
枚举语法定义格式为:
int main()
{
// 输出枚举类型
printf("%d\n",(enum Day)c);
printf("请输入您最喜爱的颜色:red:1,green:2,blue:3\n");
enum Favorite_Color color;
scanf("%u",&color);
switch (color) {
case 1:
printf("请输入您最喜爱的颜色:red\n");
break;
case 2:
printf("请输入您最喜爱的颜色:green\n");
break;
case 3:
printf("请输入您最喜爱的颜色:blue\n");
break;
default:
break;
}
}


1万+

被折叠的 条评论
为什么被折叠?



