程序猿的C++小笔记

本文探讨了C++中size_t类型的用途及其在容器索引中的应用,并介绍了explicit关键字的作用,即避免非预期的类型转换。此外,还详细解释了类Widget中的构造函数与赋值操作符的功能。

1. size_t 只是一个typedef, 是c++计算个数时用的某种不带正负号的(unsigned)类型。它也是vector, deque和string内的operator[ ]函数接受的参数类型。

2. explicit 可阻止被用来执行隐式类型转换(implicit type conversions), 但仍可被用来进行显式类型转换(explicit type conversions)

被声明为explicit的构造函数通常比其non-explicit兄弟更受欢迎,因为它们禁止编译器执行非预期(往往也不被期望)的类型转换。除非有一个好理由允许构造函数被用于隐式类型转换,否则把它声明为explicit.鼓励遵循相同的政策。

3. class Widget {

public:

Widget();  //default构造函数

Widget(const Widget& rhs); //copy构造函数

Widget &operator=(const Widget &rhs); //copy assignment 操作符

...

};

Widget w1 ;    //调用default构造函数

Widget w2(w1); //调用copy构造函数

Widget w3 = w2 ; //同上

w1 = w2;   //调用copy assignment 函数


4. lhs ----"life-hand side" ; rhs ---- "right-hand side"


5. 命名习惯

指向一个T型对象的指针命名为 pt;

rw可能是个 reference to Widget

成员函数:mf


6. TR1和Boost


7.结构体数组的初始化

#include <iostream>
using namespace std;

const int strsize = 10;

struct bop
{
	char fullname[strsize];
	char title[strsize];
	char bopname[strsize];
	int preference;
};


int main()
{
	bop bop_group[2] = {
	{
		"alex",
		"CTO",
		"BadMax",
		0
	},
	
	{
		"amy",
		"CEO",
		"WWW",
		0
	}
	};





	return 0;
}







【CNN-GRU-Attention】基于卷积神经网络和门控循环单元网络结合注意力机制的多变量回归预测研究(Matlab代码实现)内容概要:本文介绍了基于卷积神经网络(CNN)、门控循环单元网络(GRU)与注意力机制(Attention)相结合的多变量回归预测模型研究,重点利用Matlab实现该深度学习模型的构建与仿真。该模型通过CNN提取输入数据的局部特征,利用GRU捕捉时间序列的长期依赖关系,并引入注意力机制增强关键时间步的权重,从而提升多变量时间序列回归预测的精度与鲁棒性。文中涵盖了模型架构设计、训练流程、参数调优及实际案例验证,适用于复杂非线性系统的预测任务。; 适合人群:具备一定机器学习与深度学习基础,熟悉Matlab编程环境,从事科研或工程应用的研究生、科研人员及算法工程师,尤其适合关注时间序列预测、能源预测、智能优化等方向的技术人员。; 使用场景及目标:①应用于风电功率预测、负荷预测、交通流量预测等多变量时间序列回归任务;②帮助读者掌握CNN-GRU-Attention混合模型的设计思路与Matlab实现方法;③为学术研究、毕业论文或项目开发提供可复现的代码参考和技术支持。; 阅读建议:建议读者结合Matlab代码逐模块理解模型实现细节,重点关注数据预处理、网络结构搭建与注意力机制的嵌入方式,并通过调整超参数和更换数据集进行实验验证,以深化对模型性能影响因素的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值