Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
Two method: 1: merge one by one. 2: multiset.
Method1: merge one by one.
ListNode* merge(ListNode* l1, ListNode* l2) {
if(!l1) return l2;
if(!l2) return l1;
ListNode* head = NULL;
ListNode* currNode = NULL;
ListNode* p = l1;
ListNode* q = l2;
while(p && q) {
ListNode* node;
if(p->val < q->val) {
node = p;
p = p->next;
} else {
node = q;
q = q->next;
}
if(head = NULL) head = currNode = node;
else {
currNode->next = node;
node->next = NULL;
currNode = node;
}
}
if(p) currNode->next = p;
if(q) currNode->next = q;
return head;
}
ListNode* mergeKLists(vector<ListNode*>& lists) {
if(lists.size() == 0) return NULL;'
ListNode* head = lists[0];
for(int i = 1; i < lists.size(); ++i) {
head = merge(head, lists[i]);
}
return head;
}
Method2: multiset.
struct comparator : public binary_functin<ListNode*, ListNode*, bool> {
bool operator() (const ListNode* a, ListNode* b) {
return a->val < b->val;
}
};
ListNode* mergeKLists(vector<ListNode*>& lists) {
multiset<ListNode*, comparator> S;
for(int i = 0; i < lists.size(); ++i) {
if(lists[i]) {
S.insert(lists[i]);
}
}
ListNode* head = NULL;
ListNode* tail = NULL;
while(!S.empty()) {
ListNode* node = S.begin();
S.erase(node);
if(!head) head = tail = node;
else tail = tail->next = node;
if(node->next) {
S.insert(node->next);
}
}
return head;
}