LeetCode 295. Find Median from Data Stream

本文介绍了一种高效的数据结构,用于处理数据流中的中位数计算问题。通过使用两个堆(最大堆和最小堆),该方法能够在不断接收新数据的同时保持对当前所有数据中位数的快速访问。

Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.

Examples:

[2,3,4] , the median is 3

[2,3], the median is (2 + 3) / 2 = 2.5

Design a data structure that supports the following two operations:

  • void addNum(int num) - Add a integer number from the data stream to the data structure.
  • double findMedian() - Return the median of all elements so far.

For example:

add(1)
add(2)
findMedian() -> 1.5
add(3) 
findMedian() -> 2

The main point is to use a maxHeap and minHeap. maxHeap stores the first half part of input numbers. minHeap stores the second half part of input numbers.

#include <iostream>
#include <queue>
#include <vector>
using namespace std;


class MedianFinder {
private:
    priority_queue< int, vector<int>, greater<int> > minHeap;
    priority_queue< int, vector<int>, less<int> > maxHeap;

public:
    void addNum(int num) {
        minHeap.push(num);
        if(minHeap.size() - maxHeap.size() > 1) {
            maxHeap.push(minHeap.top());
            minHeap.pop();
        }
        if(maxHeap.size() > minHeap.size()) {
            minHeap.push(maxHeap.top());
            maxHeap.pop();
        }
    }

    double findMedian() {
        if(minHeap.size() == maxHeap.size()) return (minHeap.top() + maxHeap.top()) / 2.0;
        else return (double) minHeap.top();
    }
};

int main(void) {
    MedianFinder finder;
    finder.addNum(1);
    finder.addNum(2);
    finder.addNum(3);
    cout << finder.findMedian() << endl;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值