You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected andit will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonightwithout alerting the police.
At the first sight, this is very simple..... why not just add the even indexes and odd indexes, then compare.....
After a second thought, I found this is really stupid if I was the thief. For example: [4, 2, 3, 13, 8] --> even indexes will sum to 4+3+8 = 15. Odd indexes will sum to 2+13 = 15. But if I steal 4 + 13 = 17, I can get the maximum.
Thus, in order to steal the max, I need to consider whether the max sum of (i - 1, i -2) if sum(i-2) + num[i] > sum(i-1), I can steal i, otherwise, I will drop i to keep the value of sum(i-1).
This is DP then.... to remember the max value I passed by before.
int rob(vector<int>& nums) {
if(nums.size() == 0) return 0;
if(nums.size() == 1) return nums[0];
if(nums.size() == 2) return max(nums[0], nums[1]);
int n = nums.size();
vector<int> dp(n, 0);
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);
for(int i = 2; i < n; ++i) {
dp[i] = max(dp[i-2] + nums[i], dp[i-1]);
}
return dp[n-1];
}
To further save space: use rolling array.
int robII(vector<int>& nums) {
if(nums.size() == 0) return 0;
if(nums.size() == 1) return nums[0];
if(nums.size() == 2) return max(nums[0], nums[1]);
int prev = nums[0];
int current = max(nums[0], nums[1]);
for(int i = 3; i < nums.size(); ++i) {
int tmp = max(current, prev + nums[i]);
prev = current;
current = tmp;
}
return current;
}
Follow up: out the robbed house number to make the largest robbing value.
#include "header.h"
using namespace std;
// return the max robbing value and the robbed houses.
vector<bool> maxProfit(vector<int>& houses) {
int n = houses.size();
vector<bool> houseNumber(n, false); // house being robbed.
vector<int> dp(n, 0);
dp[0] = houses[0]; houseNumber[0] = true;
dp[1] = max(houses[0], houses[1]);
if(houses[0] < houses[1]) {houseNumber[0] = false, houseNumber[1] = true;}
for(int i = 2; i < n; ++i) {
dp[i] = max(dp[i-1], dp[i-2] + houses[i]);
if(dp[i-1] < (dp[i-2] + houses[i])) { if we would like to rob house i, we will have to drop house i - 1.
houseNumber[i-1] = false;
houseNumber[i] = true;
}
}
return houseNumber;
}
int main(void) {
vector<int> houses{500, 3, 300, 13, 8};
vector<bool> res = maxProfit(houses);
for(int i = 0; i < res.size(); ++i) {
if(res[i] == true) cout << i << endl;
}
}

本文探讨了如何作为专业抢劫者,在不触发相邻房屋安全系统警报的情况下,最大化抢劫收益。通过动态规划算法解决此问题,避免了简单的贪心策略导致的错误决策。并进一步介绍了节省空间的方法,以及后续挑战:不仅获取最大收益,还确定被抢劫的房屋数量。
877

被折叠的 条评论
为什么被折叠?



