Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted in ascending from left to right.
- Integers in each column are sorted in ascending from top to bottom.
For example,
Consider the following matrix:
[ [1, 4, 7, 11, 15], [2, 5, 8, 12, 19], [3, 6, 9, 16, 22], [10, 13, 14, 17, 24], [18, 21, 23, 26, 30] ]
Given target = 5, return true.
Given target = 20, return false.
Observe carefully... 0 colomn and m-1 row is a increasing sequence.... same with 1 column and m-2 row....etc al.
#include <vector>
#include <iostream>
using namespace std;
bool searchMatrix(vector<vector<int>>& matrix, int target) {
if(matrix.size() == 0) return false;
if(matrix[0].size() == 0) return false;
int m = matrix.size();
int n = matrix[0].size();
int i = m-1, j = 0;
while(i >= 0 && j < n) {
if(matrix[i][j] == target) return true;
else if(matrix[i][j] < target) j++;
else i--;
}
return false;
}
int main(void) {
vector< vector<int> > matrix{
{1, 4, 7, 11, 15},
{2, 5, 8, 12, 19},
{3, 6, 9, 16, 22},
{10, 13, 14, 17, 24},
{18, 21, 23, 26, 30}};
bool found = searchMatrix(matrix, 5);
cout << found << endl;
}
本文介绍了一种高效的矩阵搜索算法,该算法能在排序矩阵中快速查找目标值。矩阵的每一行从左到右递增排序,每一列从上到下递增排序。通过观察,可以发现从矩阵的最后一行第一列开始搜索,若当前值小于目标值则向右移动,大于目标值则向上移动,直至找到目标值或超出边界。
417

被折叠的 条评论
为什么被折叠?



