Number of Islands

本文介绍了一种计算二维网格中岛屿数量的方法。使用并查集(Union-Find)算法和深度优先搜索(DFS)两种方式实现。并查集算法通过连接相邻陆地来减少岛屿数量;而DFS则将每个岛屿的所有部分标记为已访问。

Given a 2d grid map of ‘1’s (land) and ‘0’s (water), count the number of islands. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.

Example 1:
11110
11010
11000
00000
Answer: 1

Example 2:
11000
11000
00100
00011
Answer: 3

打算用union-find的方法,用dfs迭代时有可能内存溢出。

class UF(object):
    def union(self, a, b, tmp_grid, sz):
        p = self.root(a, tmp_grid)
        q = self.root(b, tmp_grid)
        if p == q:
            return
        if sz[p] > sz[q]:
            tmp_grid[q] = p
            sz[p] += sz[q]
        else:
            tmp_grid[p] = q
            sz[q] += sz[p]

    def root(self, a, tmp_grid):
        while(tmp_grid[a] != a):
            a = tmp_grid[a]

        return a


class Solution(object):
    def numIslands(self, grid):
        """
        :type grid: List[List[str]]
        :rtype: int
        """
        if len(grid) == 0:
            return 0
        tmp_grid = [i for i in range(len(grid) * len(grid[0]))]
        uf = UF()
        m = len(grid)
        n = len(grid[0])
        sz = [1] * (m*n)

        for i in range(m):
            for j in range(n):
                if grid[i][j] == '1':
                    if j+1 < n:
                        if grid[i][j+1] == '1':
                            uf.union(i*n+j, i*n+j+1, tmp_grid, sz)
                    if i+1 < m:
                        if grid[i+1][j] == '1':
                            uf.union(i*n+j, (i+1)*n+j, tmp_grid, sz)

        count = 0
        for i in range(len(tmp_grid)):
            if tmp_grid[i] == i and grid[i/n][i%n] == '1':
                count += 1

        return count

在网上看到比较好的解法是用dfs。如果当前grid为1,则将其设置为2,并将其周围所有的1都设置为2。这样在搜索过程中遇到的所有的1就是连通量的数目。

class Solution(object):
    def numIslands(self, grid):
        """
        :type grid: List[List[str]]
        :rtype: int
        """
        if len(grid) == 0:
            return 0

        count = 0    
        for i in range(len(grid)):
            for j in range(len(grid[0])):
                if grid[i][j] == '1':
                    count += 1
                    self.dfs(i, j, grid)

        return count
    def dfs(self, i, j, grid):
        if i < 0 or i >= len(grid) or j < 0 or j >= len(grid[0]):
            return
        if grid[i][j] == '1':
            grid[i][j] = '2'
            self.dfs(i, j+1, grid)
            self.dfs(i, j-1, grid)
            self.dfs(i-1, j, grid)
            self.dfs(i+1, j, grid)
1328:Radar Installation 查看 提交 统计 提示 提问 总时间限制: 1000ms 内存限制: 65536kB 描述 Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d. We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates. Figure A Sample Input of Radar Installations 输入 The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases. The input is terminated by a line containing pair of zeros 输出 For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case. 生成c语言代码
最新发布
10-20
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值