【亲测免费】 疾病预测-脑中风数据集

疾病预测-脑中风数据集

【下载地址】疾病预测-脑中风数据集 疾病预测-脑中风数据集 【下载地址】疾病预测-脑中风数据集 项目地址: https://gitcode.com/open-source-toolkit/f92d4

数据集描述

本仓库提供了一个名为“疾病预测-脑中风数据集”的资源文件,该数据集包含了3566条关于脑中风患者的详细数据。数据集共有10个字段,涵盖了患者的性别、年龄、症状、工作类别、居住类别、是否吸烟等信息。通过使用支持向量机、决策树、逻辑回归、随机森林等模型,该数据集的预测精度可达0.95。

数据集背景

脑中风,又称脑卒中,是由于颅内血管破裂或堵塞引起的脑组织坏死,进而产生一系列症状,包括脑出血、脑梗死等。如果不及时治疗,患者可能会死亡;即使治疗及时,患者也有可能残疾。近年来,慢性疾病如中风、缺血性心脏病、肺癌、慢性阻塞性肺病和肝癌大幅增加,已成为中国过早死亡的主要原因。

中国已经成为全球中风发病风险最高的国家,其居民中风的风险率达到了39.3%。导致中风的原因基本与生活习惯有关,如高血压、吸烟、饮酒、高钠摄入等都是中风的危险因素。研究显示,目前中国仅有10%到20%的中风患者可在3小时内被送到医院,治疗时间越晚,患者脑部的损害就越大。

中国高中风死亡率的现状提醒着社会应投入更多的防控措施。《中国脑卒中防治:进展与挑战》指出,虽然在中国,中风的发病率和患病人数都远高于心脏病,但相关医疗资源的可及性和质量水平却在32个可防控疾病中排名倒数第二。因此,预防重于治疗。

数据集用途

该数据集可用于疾病预测模型的训练和验证,帮助研究人员和医疗工作者更好地理解和预测脑中风的风险。通过分析患者的各项特征,可以为中风预防和早期干预提供有力的数据支持。

数据集字段说明

  1. 性别:患者的性别(男/女)
  2. 年龄:患者的年龄
  3. 症状:患者的主要症状描述
  4. 工作类别:患者的工作类型
  5. 居住类别:患者的居住环境类型
  6. 是否吸烟:患者是否吸烟(是/否)
  7. 其他字段:包括但不限于患者的血压、血糖、胆固醇水平等详细信息

使用建议

建议使用支持向量机、决策树、逻辑回归、随机森林等机器学习模型对该数据集进行分析和预测。通过模型训练,可以有效提高脑中风风险的预测精度,为临床决策提供科学依据。

注意事项

在使用该数据集时,请确保数据的隐私和安全,遵守相关法律法规。同时,建议结合实际临床数据进行验证,以确保模型的准确性和可靠性。


希望该数据集能为脑中风的研究和预防工作提供有力的支持,为降低中风风险、提高患者生活质量贡献一份力量。

【下载地址】疾病预测-脑中风数据集 疾病预测-脑中风数据集 【下载地址】疾病预测-脑中风数据集 项目地址: https://gitcode.com/open-source-toolkit/f92d4

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值