Waymo开放数据集挑战赛中的E2E提交错误分析与解决方案

Waymo开放数据集挑战赛中的E2E提交错误分析与解决方案

【免费下载链接】waymo-open-dataset Waymo Open Dataset 【免费下载链接】waymo-open-dataset 项目地址: https://gitcode.com/gh_mirrors/wa/waymo-open-dataset

概述

Waymo开放数据集端到端(End-to-End,E2E)驾驶挑战赛是自动驾驶领域的重要赛事,参赛者需要基于视觉输入预测车辆的未来轨迹。然而,在提交过程中,许多团队会遇到各种技术问题和错误。本文深入分析E2E提交过程中的常见错误,并提供详细的解决方案。

E2E挑战赛提交流程

mermaid

常见错误类型及解决方案

1. 文件格式错误

错误现象
  • 提交文件无法解析
  • 服务器返回"Invalid submission format"错误
根本原因
# 错误的提交文件结构示例
submission = {
    "predictions": [...]  # 缺少必要的元数据字段
}

# 正确的提交文件结构
submission = wod_e2ed_submission_pb2.E2EDChallengeSubmission(
    predictions=predictions,
    submission_type=wod_e2ed_submission_pb2.E2EDChallengeSubmission.SubmissionType.E2ED_SUBMISSION,
    account_name="your_email@domain.com",
    unique_method_name="YourMethodName",
    authors=["Author1", "Author2"],
    affiliation="YourInstitution",
    description="Method description",
    method_link="paper_link",
    uses_public_model_pretraining=True,  # 必须字段
    public_model_names=["ModelName"],    # 必须字段
    num_model_parameters="200K"          # 必须字段
)
解决方案

使用官方提供的proto定义确保所有必填字段都已正确设置:

from waymo_open_dataset.protos import end_to_end_driving_submission_pb2 as wod_e2ed_submission_pb2

def create_valid_submission(predictions, config):
    """创建符合格式要求的提交文件"""
    submission = wod_e2ed_submission_pb2.E2EDChallengeSubmission()
    submission.predictions.extend(predictions)
    submission.submission_type = wod_e2ed_submission_pb2.E2EDChallengeSubmission.SubmissionType.E2ED_SUBMISSION
    submission.account_name = config['account_email']
    submission.unique_method_name = config['method_name']
    submission.authors.extend(config['authors'])
    submission.affiliation = config['affiliation']
    submission.description = config['description']
    submission.method_link = config['paper_link']
    submission.uses_public_model_pretraining = config['uses_public_model']
    submission.public_model_names.extend(config['public_models'])
    submission.num_model_parameters = config['model_params']
    return submission

2. 轨迹数据格式错误

错误现象
  • 轨迹长度不正确
  • 坐标值超出合理范围
  • 时间戳不匹配
轨迹规范要求
参数要求示例值
预测长度5秒,4Hz频率20个航点
第一个航点时间t+0.25秒-
最后一个航点时间t+5秒-
坐标维度仅x,y坐标[x1, y1], [x2, y2], ...
坐标单位浮点数
验证代码
def validate_trajectory(trajectory):
    """验证轨迹数据格式"""
    errors = []
    
    # 检查航点数量
    if len(trajectory.pos_x) != 20 or len(trajectory.pos_y) != 20:
        errors.append("轨迹必须包含20个航点")
    
    # 检查坐标范围(合理假设)
    if max(trajectory.pos_x) > 100 or min(trajectory.pos_x) < -100:
        errors.append("x坐标超出合理范围")
    if max(trajectory.pos_y) > 100 or min(trajectory.pos_y) < -100:
        errors.append("y坐标超出合理范围")
    
    # 检查是否为NaN值
    if any(math.isnan(x) for x in trajectory.pos_x) or any(math.isnan(y) for y in trajectory.pos_y):
        errors.append("坐标包含NaN值")
    
    return errors

def create_trajectory_prediction(pos_x, pos_y):
    """创建有效的轨迹预测"""
    trajectory = wod_e2ed_submission_pb2.TrajectoryPrediction()
    trajectory.pos_x.extend(pos_x.astype(np.float32).tolist())
    trajectory.pos_y.extend(pos_y.astype(np.float32).tolist())
    return trajectory

3. 帧名称匹配错误

错误现象
  • "Frame not found"错误
  • 评估结果为空
根本原因

帧名称必须与数据集中的context.name完全匹配:

# 正确获取帧名称
frame_name = data.frame.context.name  # 示例: 'segment-1234567890_1234_5678_vehicle_1234'

# 错误的帧名称处理
wrong_name = "segment_1234567890"  # 缺少完整上下文信息
解决方案
def extract_frame_names(dataset_path):
    """从数据集中提取所有帧名称"""
    frame_names = []
    filenames = tf.io.matching_files(dataset_path)
    dataset = tf.data.TFRecordDataset(filenames, compression_type='')
    
    for raw_data in dataset:
        data = wod_e2ed_pb2.E2EDFrame()
        data.ParseFromString(raw_data.numpy())
        frame_names.append(data.frame.context.name)
    
    return frame_names

def validate_frame_mapping(predictions, ground_truth_frames):
    """验证预测帧名称与真实帧的匹配"""
    missing_frames = []
    extra_frames = []
    
    prediction_frames = {pred.frame_name for pred in predictions}
    gt_frame_set = set(ground_truth_frames)
    
    missing_frames = gt_frame_set - prediction_frames
    extra_frames = prediction_frames - gt_frame_set
    
    return missing_frames, extra_frames

4. 模型元数据错误

必填字段检查表
字段要求常见错误
uses_public_model_pretraining必须为true或false未设置或设置为None
public_model_names使用列表格式字符串而非列表
num_model_parameters格式"200K"、"1.2B"纯数字或错误格式
submission_type必须为E2ED_SUBMISSION未设置或错误类型
验证函数
def validate_submission_metadata(submission):
    """验证提交元数据"""
    errors = []
    
    if not submission.HasField('uses_public_model_pretraining'):
        errors.append("uses_public_model_pretraining字段必须设置")
    
    if not submission.public_model_names:
        errors.append("public_model_names不能为空")
    
    if not submission.HasField('num_model_parameters'):
        errors.append("num_model_parameters字段必须设置")
    else:
        # 验证参数数量格式
        param_str = submission.num_model_parameters
        if not re.match(r'^\d+[KMBT]?$', param_str):
            errors.append("num_model_parameters格式错误,应为'200K'格式")
    
    if submission.submission_type != wod_e2ed_submission_pb2.E2EDChallengeSubmission.SubmissionType.E2ED_SUBMISSION:
        errors.append("submission_type必须设置为E2ED_SUBMISSION")
    
    return errors

5. 文件分片和打包错误

最佳实践
def create_submission_shards(predictions, output_dir, shard_size=1000):
    """创建分片提交文件"""
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    
    num_shards = math.ceil(len(predictions) / shard_size)
    submission_files = []
    
    for i in range(num_shards):
        start_idx = i * shard_size
        end_idx = min((i + 1) * shard_size, len(predictions))
        shard_predictions = predictions[start_idx:end_idx]
        
        submission = create_valid_submission(shard_predictions, config)
        filename = os.path.join(output_dir, f'part-{i:05d}-of-{num_shards:05d}')
        
        with tf.io.gfile.GFile(filename, 'wb') as f:
            f.write(submission.SerializeToString())
        submission_files.append(filename)
    
    return submission_files

def package_submission(output_dir, submission_name):
    """打包提交文件"""
    import tarfile
    
    tar_path = f"{submission_name}.tar"
    with tarfile.open(tar_path, "w") as tar:
        tar.add(output_dir, arcname=os.path.basename(output_dir))
    
    # 压缩文件
    import gzip
    with open(tar_path, 'rb') as f_in:
        with gzip.open(f"{tar_path}.gz", 'wb') as f_out:
            f_out.write(f_in.read())
    
    return f"{tar_path}.gz"

调试和验证工具

1. 本地验证脚本

def validate_submission_locally(submission_path, dataset_path):
    """本地验证提交文件"""
    # 读取提交文件
    with tf.io.gfile.GFile(submission_path, 'rb') as f:
        submission = wod_e2ed_submission_pb2.E2EDChallengeSubmission()
        submission.ParseFromString(f.read())
    
    # 验证元数据
    metadata_errors = validate_submission_metadata(submission)
    if metadata_errors:
        print("元数据错误:", metadata_errors)
        return False
    
    # 验证轨迹数据
    for i, prediction in enumerate(submission.predictions):
        traj_errors = validate_trajectory(prediction.trajectory)
        if traj_errors:
            print(f"轨迹{i}错误:", traj_errors)
            return False
    
    # 验证帧匹配
    gt_frames = extract_frame_names(dataset_path)
    missing, extra = validate_frame_mapping(submission.predictions, gt_frames)
    
    if missing:
        print(f"缺少{len(missing)}个帧的预测")
        return False
    
    if extra:
        print(f"包含{len(extra)}个额外帧的预测")
        return False
    
    print("提交文件验证通过!")
    return True

2. 性能基准测试

def benchmark_submission_performance(submission_path, ground_truth_path):
    """基准测试提交性能"""
    # 加载提交预测
    with tf.io.gfile.GFile(submission_path, 'rb') as f:
        submission = wod_e2ed_submission_pb2.E2EDChallengeSubmission()
        submission.ParseFromString(f.read())
    
    # 创建预测字典
    pred_dict = {}
    for pred in submission.predictions:
        pred_dict[pred.frame_name] = np.stack([
            pred.trajectory.pos_x, 
            pred.trajectory.pos_y
        ], axis=1)
    
    # 加载真实数据并计算指标
    ade_scores = []
    fde_scores = []
    
    filenames = tf.io.matching_files(ground_truth_path)
    dataset = tf.data.TFRecordDataset(filenames, compression_type='')
    
    for raw_data in dataset:
        data = wod_e2ed_pb2.E2EDFrame()
        data.ParseFromString(raw_data.numpy())
        frame_name = data.frame.context.name
        
        if frame_name in pred_dict:
            gt_traj = np.stack([data.future_states.pos_x, data.future_states.pos_y], axis=1)
            pred_traj = pred_dict[frame_name]
            
            # 计算ADE(平均位移误差)
            ade = np.mean(np.linalg.norm(pred_traj - gt_traj, axis=1))
            ade_scores.append(ade)
            
            # 计算FDE(最终位移误差)
            fde = np.linalg.norm(pred_traj[-1] - gt_traj[-1])
            fde_scores.append(fde)
    
    return {
        'ade_mean': np.mean(ade_scores),
        'ade_std': np.std(ade_scores),
        'fde_mean': np.mean(fde_scores),
        'fde_std': np.std(fde_scores),
        'coverage': len(ade_scores) / len(pred_dict)
    }

常见问题排查流程

mermaid

总结

Waymo E2E驾驶挑战赛的提交过程需要严格遵守数据格式和规范要求。通过本文提供的错误分析和解决方案,参赛者可以:

  1. 避免常见格式错误:使用官方proto定义和验证工具
  2. 确保数据完整性:验证轨迹长度、坐标范围和帧匹配
  3. 正确设置元数据:包括模型信息和作者信息
  4. 本地测试验证:在提交前进行充分的本地测试

遵循这些最佳实践将大大提高提交成功率,让团队能够专注于模型性能的优化而不是技术细节的处理。记住,仔细的预处理和验证是成功提交的关键。

【免费下载链接】waymo-open-dataset Waymo Open Dataset 【免费下载链接】waymo-open-dataset 项目地址: https://gitcode.com/gh_mirrors/wa/waymo-open-dataset

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值