【生产力革命】30分钟上手:将waifu-diffusion封装为企业级API服务(附高并发部署方案)

【生产力革命】30分钟上手:将waifu-diffusion封装为企业级API服务(附高并发部署方案)

【免费下载链接】waifu-diffusion 【免费下载链接】waifu-diffusion 项目地址: https://ai.gitcode.com/mirrors/hakurei/waifu-diffusion

你是否正经历这些痛点?

  • 团队多人重复部署模型浪费算力资源
  • 前端/移动端调用AI模型门槛高
  • 本地运行显存不足频繁崩溃
  • 缺乏统一的调用接口和权限管理

本文将带你实现:从0到1构建支持高并发的waifu-diffusion API服务,包含负载均衡配置、请求限流、模型预热等企业级特性,让AI绘图能力像自来水一样随用随取。

目录

  1. 技术选型与架构设计
  2. 环境准备与依赖安装
  3. 核心代码实现:300行代码完成API封装
  4. 性能优化:从单用户到支持50并发请求
  5. 生产环境部署:Docker+Nginx方案
  6. 高级特性:权限控制与请求队列
  7. 完整测试用例与监控方案

一、技术选型与架构设计

为什么选择这些技术栈?

组件选型优势适用场景
Web框架FastAPI异步性能强,自动生成API文档高并发图像生成服务
模型加载Diffusers官方支持,内存占用低Stable Diffusion系列模型
部署容器Docker环境一致性,隔离性好多版本模型并行部署
反向代理Nginx负载均衡,静态资源缓存分布式API集群
队列系统Redis+RQ轻量级任务队列,易于扩展异步图像生成任务

系统架构图

mermaid

二、环境准备与依赖安装

基础环境要求

  • Python 3.8+
  • CUDA 11.3+ (推荐11.7)
  • 显存 ≥ 8GB (推荐12GB+)
  • 磁盘空间 ≥ 20GB (模型文件约8GB)

一键安装脚本

# 创建虚拟环境
python -m venv venv
source venv/bin/activate  # Linux/Mac
venv\Scripts\activate     # Windows

# 安装核心依赖
pip install fastapi uvicorn diffusers transformers torch torchvision redis rq python-multipart python-dotenv

# 安装生产环境工具
pip install gunicorn uvloop httptools

模型下载(两种方案)

# 方案1:直接从官方仓库克隆(推荐)
git clone https://github.com/hakurei/waifu-diffusion.git
cd waifu-diffusion

# 方案2:使用HuggingFace Hub(需通过合规渠道访问)
pip install huggingface-hub
huggingface-cli download hakurei/waifu-diffusion-v1-4 --local-dir ./model

三、核心代码实现

1. 项目结构设计

waifu-api/
├── app/
│   ├── __init__.py
│   ├── main.py          # FastAPI应用入口
│   ├── model.py         # 模型加载与推理
│   ├── api/             # API路由
│   │   ├── __init__.py
│   │   ├── endpoints/
│   │   │   ├── __init__.py
│   │   │   └── generation.py  # 图像生成接口
│   ├── schemas/         # 请求响应模型
│   │   ├── __init__.py
│   │   └── generation.py
│   ├── utils/           # 工具函数
│   │   ├── __init__.py
│   │   ├── auth.py      # 权限验证
│   │   └── rate_limit.py # 限流控制
├── config/              # 配置文件
│   ├── __init__.py
│   └── settings.py
├── .env                 # 环境变量
├── requirements.txt     # 依赖清单
├── worker.py            # 任务队列Worker
└── docker-compose.yml   # 部署配置

2. 模型加载核心代码(app/model.py)

import torch
from diffusers import StableDiffusionPipeline
from typing import Optional, List
import logging
from pathlib import Path

logger = logging.getLogger(__name__)

class WaifuDiffusionModel:
    _instance = None
    _pipeline = None
    
    @classmethod
    def get_instance(cls, model_path: str = "./", device: str = "cuda"):
        """单例模式加载模型,避免重复占用显存"""
        if cls._instance is None:
            cls._instance = cls(model_path, device)
        return cls._instance
    
    def __init__(self, model_path: str, device: str):
        self.model_path = model_path
        self.device = device
        self._load_model()
    
    def _load_model(self):
        """加载模型并预热"""
        logger.info(f"Loading model from {self.model_path}")
        
        # 加载模型管道
        self._pipeline = StableDiffusionPipeline.from_pretrained(
            self.model_path,
            torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
        ).to(self.device)
        
        # 模型预热:执行一次空推理
        logger.info("Warming up model...")
        with torch.inference_mode():
            self._pipeline(
                prompt="warmup", 
                num_inference_steps=1,
                guidance_scale=1.0
            )
        logger.info("Model loaded successfully")
    
    def generate(
        self,
        prompt: str,
        negative_prompt: Optional[str] = None,
        width: int = 512,
        height: int = 512,
        num_inference_steps: int = 20,
        guidance_scale: float = 7.5,
        num_images_per_prompt: int = 1,
        seed: Optional[int] = None
    ) -> List[bytes]:
        """生成图像并返回字节数据"""
        if seed is not None:
            generator = torch.Generator(self.device).manual_seed(seed)
        else:
            generator = None
        
        with torch.inference_mode():
            results = self._pipeline(
                prompt=prompt,
                negative_prompt=negative_prompt,
                width=width,
                height=height,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                num_images_per_prompt=num_images_per_prompt,
                generator=generator
            )
        
        # 将图像转换为字节
        images_bytes = []
        for image in results.images:
            from io import BytesIO
            img_byte_arr = BytesIO()
            image.save(img_byte_arr, format='PNG')
            images_bytes.append(img_byte_arr.getvalue())
            
        return images_bytes

3. API接口实现(app/api/endpoints/generation.py)

from fastapi import APIRouter, Depends, HTTPException, BackgroundTasks, Query
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field
from typing import Optional, List, Dict, Any
import uuid
import time
from app.utils.rate_limit import rate_limiter
from app.utils.auth import api_key_auth
from app.worker import generate_image_task
from app.config.settings import settings

router = APIRouter()

# 请求模型
class GenerationRequest(BaseModel):
    prompt: str = Field(..., min_length=1, max_length=1000, description="图像描述文本")
    negative_prompt: Optional[str] = Field(None, max_length=1000, description="不希望出现的内容描述")
    width: int = Field(512, ge=64, le=1024, multiple_of=64, description="图像宽度")
    height: int = Field(512, ge=64, le=1024, multiple_of=64, description="图像高度")
    num_inference_steps: int = Field(20, ge=10, le=100, description="推理步数,越大质量越高速度越慢")
    guidance_scale: float = Field(7.5, ge=1.0, le=20.0, description="引导尺度,越大越贴合提示词")
    num_images_per_prompt: int = Field(1, ge=1, le=4, description="每次请求生成图像数量")
    seed: Optional[int] = Field(None, ge=0, description="随机种子,指定后可复现结果")
    sync: bool = Field(False, description="是否同步返回结果,大量请求建议设为false")

# 同步生成接口
@router.post("/generate", dependencies=[Depends(api_key_auth), Depends(rate_limiter)])
async def generate_image_sync(request: GenerationRequest):
    """同步生成图像接口(适合小批量请求)"""
    task_id = str(uuid.uuid4())
    
    # 调用模型生成图像
    from app.model import WaifuDiffusionModel
    model = WaifuDiffusionModel.get_instance()
    
    start_time = time.time()
    try:
        images = model.generate(
            prompt=request.prompt,
            negative_prompt=request.negative_prompt,
            width=request.width,
            height=request.height,
            num_inference_steps=request.num_inference_steps,
            guidance_scale=request.guidance_scale,
            num_images_per_prompt=request.num_images_per_prompt,
            seed=request.seed
        )
        elapsed = time.time() - start_time
        
        # 返回第一张图像(或多图像打包)
        if len(images) == 1:
            return StreamingResponse(
                iter([images[0]]),
                media_type="image/png",
                headers={"X-Task-ID": task_id, "X-Elapsed-Time": f"{elapsed:.2f}s"}
            )
        else:
            # 多图像返回ZIP包
            from io import BytesIO
            import zipfile
            zip_buffer = BytesIO()
            with zipfile.ZipFile(zip_buffer, 'w') as zip_file:
                for i, img_bytes in enumerate(images):
                    zip_file.writestr(f"image_{i+1}.png", img_bytes)
            zip_buffer.seek(0)
            
            return StreamingResponse(
                zip_buffer,
                media_type="application/zip",
                headers={
                    "X-Task-ID": task_id,
                    "X-Elapsed-Time": f"{elapsed:.2f}s",
                    "Content-Disposition": f"attachment; filename=waifu_images_{task_id}.zip"
                }
            )
            
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"生成失败: {str(e)}")

# 异步生成接口
@router.post("/generate/async", dependencies=[Depends(api_key_auth), Depends(rate_limiter)])
async def generate_image_async(request: GenerationRequest, background_tasks: BackgroundTasks):
    """异步生成图像接口(适合大批量请求)"""
    task_id = str(uuid.uuid4())
    
    # 添加到任务队列
    background_tasks.add_task(
        generate_image_task,
        task_id=task_id,
        request_data=request.dict()
    )
    
    return {
        "task_id": task_id,
        "status": "pending",
        "message": "任务已加入队列,请通过/task/{task_id}查询结果",
        "estimated_time": f"{request.num_images_per_prompt * request.num_inference_steps * 0.1:.1f}s"
    }

四、性能优化方案

1. 模型加载优化

# app/model.py优化版本
def _load_model(self):
    # 使用模型分片加载减少内存峰值
    from diffusers import StableDiffusionPipeline
    import torch
    
    # 仅加载需要的组件
    self._pipeline = StableDiffusionPipeline.from_pretrained(
        self.model_path,
        torch_dtype=torch.float16,
        loaders=[
            # 仅加载文本编码器、Unet和VAE
            "text_encoder", "unet", "vae"
        ]
    ).to(self.device)
    
    # 启用内存优化
    self._pipeline.enable_attention_slicing()  # 注意力切片
    self._pipeline.enable_vae_slicing()        # VAE切片
    
    # 可选:启用xFormers加速(需要安装xformers)
    try:
        self._pipeline.enable_xformers_memory_efficient_attention()
        logger.info("Enabled xFormers memory efficient attention")
    except ImportError:
        logger.warning("xFormers not installed, using default attention")

2. 高并发配置(docker-compose.yml)

version: '3.8'

services:
  # API服务(多实例负载均衡)
  api:
    build: .
    command: gunicorn app.main:app -w 4 -k uvicorn.workers.UvicornWorker -b 0.0.0.0:8000
    volumes:
      - ./:/app
      - ./model:/app/model
    deploy:
      replicas: 3  # 启动3个API实例
    environment:
      - MODEL_PATH=/app/model
      - REDIS_URL=redis://redis:6379/0
      - API_KEY=your_secure_api_key
      - MAX_CONCURRENT_REQUESTS=50
    depends_on:
      - redis

  # Redis用于任务队列和缓存
  redis:
    image: redis:7-alpine
    volumes:
      - redis_data:/data
    ports:
      - "6379:6379"

  # 任务工作节点(处理实际推理)
  worker:
    build: .
    command: rq worker --url redis://redis:6379/0 waifu_queue
    volumes:
      - ./:/app
      - ./model:/app/model
    deploy:
      replicas: 2  # 2个工作节点
    environment:
      - MODEL_PATH=/app/model
      - REDIS_URL=redis://redis:6379/0
    depends_on:
      - redis

  # Nginx反向代理与负载均衡
  nginx:
    image: nginx:alpine
    ports:
      - "80:80"
      - "443:443"
    volumes:
      - ./nginx/conf.d:/etc/nginx/conf.d
      - ./nginx/ssl:/etc/nginx/ssl
      - ./static:/var/www/static
    depends_on:
      - api

volumes:
  redis_data:

3. Nginx负载均衡配置(nginx/conf.d/default.conf)

upstream waifu_api {
    server api:8000;
    server api:8001;
    server api:8002;
    
    # 加权轮询策略
    weight 1;
    # 故障检测
    max_fails 3;
    fail_timeout 30s;
}

server {
    listen 80;
    server_name waifu-api.example.com;
    
    # 请求限制
    limit_req_zone $binary_remote_addr zone=waifu_api_limit:10m rate=10r/s;
    
    location / {
        proxy_pass http://waifu_api;
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
        proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
        
        # 启用请求缓冲
        proxy_buffering on;
        proxy_buffer_size 16k;
        proxy_buffers 4 64k;
        
        # 超时设置
        proxy_connect_timeout 300s;
        proxy_send_timeout 300s;
        proxy_read_timeout 300s;
    }
    
    # 静态资源缓存
    location ~* \.(png|jpg|jpeg|zip)$ {
        root /var/www/static;
        expires 7d;
        add_header Cache-Control "public, max-age=604800";
    }
    
    # 状态监控
    location /health {
        proxy_pass http://waifu_api/health;
        access_log off;
        allow 127.0.0.1;
        deny all;
    }
}

五、生产环境部署

1. Dockerfile

FROM nvidia/cuda:11.7.1-cudnn8-runtime-ubuntu20.04

WORKDIR /app

# 设置Python环境
RUN apt-get update && apt-get install -y --no-install-recommends \
    python3.9 \
    python3-pip \
    python3.9-dev \
    && rm -rf /var/lib/apt/lists/*

# 设置Python别名
RUN ln -s /usr/bin/python3.9 /usr/bin/python && \
    ln -s /usr/bin/pip3 /usr/bin/pip

# 安装依赖
COPY requirements.txt .
RUN pip install --upgrade pip && \
    pip install -r requirements.txt --no-cache-dir

# 安装xFormers(可选,提升性能)
RUN pip install xformers==0.0.20 --no-cache-dir

# 复制代码
COPY . .

# 启动脚本
COPY start.sh /start.sh
RUN chmod +x /start.sh

# 暴露端口
EXPOSE 8000

# 运行服务
CMD ["/start.sh"]

2. 启动脚本(start.sh)

#!/bin/bash
set -e

# 检查CUDA是否可用
if [ -z "$CUDA_VISIBLE_DEVICES" ]; then
    echo "CUDA_VISIBLE_DEVICES is not set, using all GPUs"
else
    echo "Using GPUs: $CUDA_VISIBLE_DEVICES"
fi

# 启动RQ worker(处理异步任务)
rq worker --url $REDIS_URL waifu_queue &

# 启动API服务(使用gunicorn多进程)
exec gunicorn app.main:app \
    -w ${WORKERS:-3} \
    -k uvicorn.workers.UvicornWorker \
    -b 0.0.0.0:8000 \
    --max-requests 100 \
    --max-requests-jitter 50 \
    --timeout 300 \
    --keep-alive 5

3. 完整部署命令

# 1. 创建环境变量文件
cat > .env << EOF
MODEL_PATH=./waifu-diffusion
REDIS_URL=redis://redis:6379/0
API_KEY=your_secure_api_key_here
MAX_CONCURRENT_REQUESTS=50
WORKERS=3
EOF

# 2. 启动服务栈
docker-compose up -d

# 3. 查看日志
docker-compose logs -f api worker

# 4. 测试API
curl -X POST http://localhost/generate \
  -H "Content-Type: application/json" \
  -H "X-API-Key: your_secure_api_key_here" \
  -d '{"prompt":"1girl, blue hair, school uniform, smile", "width":512, "height":512, "sync":true}' --output test.png

六、高级特性实现

1. 请求限流中间件(app/utils/rate_limit.py)

from fastapi import Request, HTTPException, status
from fastapi.middleware.base import BaseHTTPMiddleware
from slowapi import Limiter, _rate_limit_exceeded_handler
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
from collections import defaultdict
import time

# 内存存储限流记录(生产环境建议用Redis)
request_records = defaultdict(list)

class MemoryRateLimiter:
    def __init__(self, rate_limit: str = "10/minute"):
        """初始化限流策略"""
        # 解析限流配置
        count, period = rate_limit.split('/')
        self.count = int(count)
        self.period = self._parse_period(period)
        
    def _parse_period(self, period_str: str) -> int:
        """解析时间周期(m->分钟,h->小时,s->秒)"""
        if period_str.endswith('m'):
            return int(period_str[:-1]) * 60
        elif period_str.endswith('h'):
            return int(period_str[:-1]) * 3600
        elif period_str.endswith('s'):
            return int(period_str[:-1])
        else:
            raise ValueError(f"Invalid period: {period_str}")
    
    async def __call__(self, request: Request):
        """检查请求是否超限"""
        client_ip = get_remote_address(request)
        now = time.time()
        
        # 清理过期记录
        request_records[client_ip] = [t for t in request_records[client_ip] if now - t < self.period]
        
        # 检查是否超限
        if len(request_records[client_ip]) >= self.count:
            retry_after = int(self.period - (now - request_records[client_ip][0]))
            raise HTTPException(
                status_code=status.HTTP_429_TOO_MANY_REQUESTS,
                detail=f"请求过于频繁,请{retry_after}秒后再试",
                headers={"Retry-After": str(retry_after)}
            )
        
        # 记录请求时间
        request_records[client_ip].append(now)
        return True

# 创建限流器实例
rate_limiter = MemoryRateLimiter("20/minute")  # 每分钟最多20个请求

2. 任务队列实现(app/worker.py)

import redis
from rq import Queue
from app.config.settings import settings
import json
import logging
from pathlib import Path
from app.model import WaifuDiffusionModel
import time

# 连接Redis
redis_conn = redis.from_url(settings.redis_url)
queue = Queue('waifu_queue', connection=redis_conn)

# 任务状态存储路径
TASKS_DIR = Path("tasks")
TASKS_DIR.mkdir(exist_ok=True)

def generate_image_task(task_id: str, request_data: dict):
    """处理图像生成任务"""
    logger = logging.getLogger("worker")
    task_path = TASKS_DIR / f"{task_id}.json"
    start_time = time.time()
    
    # 记录任务开始状态
    with open(task_path, "w") as f:
        json.dump({
            "task_id": task_id,
            "status": "processing",
            "progress": 0,
            "request_data": request_data,
            "result": None,
            "error": None,
            "start_time": start_time
        }, f)
    
    try:
        # 调用模型生成图像
        model = WaifuDiffusionModel.get_instance()
        images = model.generate(**request_data)
        
        # 保存图像
        output_dir = Path("static") / "generated" / task_id
        output_dir.mkdir(parents=True, exist_ok=True)
        
        image_paths = []
        for i, img_bytes in enumerate(images):
            img_path = output_dir / f"image_{i+1}.png"
            with open(img_path, "wb") as f:
                f.write(img_bytes)
            image_paths.append(f"/generated/{task_id}/image_{i+1}.png")
        
        # 更新任务成功状态
        with open(task_path, "w") as f:
            json.dump({
                "task_id": task_id,
                "status": "completed",
                "progress": 100,
                "request_data": request_data,
                "result": {
                    "image_paths": image_paths,
                    "count": len(images)
                },
                "error": None,
                "start_time": start_time,
                "end_time": time.time(),
                "elapsed_time": time.time() - start_time
            }, f)
            
    except Exception as e:
        # 更新任务失败状态
        logger.error(f"Task {task_id} failed: {str(e)}", exc_info=True)
        with open(task_path, "w") as f:
            json.dump({
                "task_id": task_id,
                "status": "failed",
                "progress": 0,
                "request_data": request_data,
                "result": None,
                "error": str(e),
                "start_time": start_time,
                "end_time": time.time()
            }, f)

七、测试与监控

1. API测试脚本

# test_api.py
import requests
import time
import json

API_URL = "http://localhost"
API_KEY = "your_secure_api_key_here"

def test_sync_generation():
    """测试同步生成接口"""
    print("Testing synchronous generation...")
    payload = {
        "prompt": "1girl, red hair, school uniform, smile, cherry blossoms",
        "width": 512,
        "height": 512,
        "num_inference_steps": 20,
        "guidance_scale": 7.5,
        "sync": True
    }
    
    headers = {
        "Content-Type": "application/json",
        "X-API-Key": API_KEY
    }
    
    start_time = time.time()
    response = requests.post(
        f"{API_URL}/generate",
        headers=headers,
        data=json.dumps(payload)
    )
    
    elapsed = time.time() - start_time
    print(f"Sync request took {elapsed:.2f}s")
    
    if response.status_code == 200:
        with open("test_sync_result.png", "wb") as f:
            f.write(response.content)
        print("Sync test successful, image saved as test_sync_result.png")
    else:
        print(f"Sync test failed: {response.status_code} - {response.text}")

def test_async_generation():
    """测试异步生成接口"""
    print("\nTesting asynchronous generation...")
    payload = {
        "prompt": "1boy, blue hair, glasses, casual clothes, park background",
        "width": 512,
        "height": 512,
        "num_inference_steps": 30,
        "guidance_scale": 8.0,
        "num_images_per_prompt": 2,
        "sync": False
    }
    
    headers = {
        "Content-Type": "application/json",
        "X-API-Key": API_KEY
    }
    
    response = requests.post(
        f"{API_URL}/generate/async",
        headers=headers,
        data=json.dumps(payload)
    )
    
    if response.status_code != 200:
        print(f"Async test failed: {response.status_code} - {response.text}")
        return
        
    result = response.json()
    task_id = result["task_id"]
    print(f"Async task created: {task_id}")
    print(f"Estimated time: {result['estimated_time']}")
    
    # 查询任务状态
    for _ in range(20):  # 最多查询20次
        time.sleep(2)
        status_response = requests.get(
            f"{API_URL}/task/{task_id}",
            headers={"X-API-Key": API_KEY}
        )
        
        if status_response.status_code != 200:
            print(f"Status check failed: {status_response.status_code}")
            break
            
        status = status_response.json()
        print(f"Task status: {status['status']} (progress: {status.get('progress', 0)}%)")
        
        if status["status"] == "completed":
            print("Async task completed!")
            print("Image paths:", status["result"]["image_paths"])
            break
        elif status["status"] == "failed":
            print(f"Async task failed: {status['error']}")
            break

if __name__ == "__main__":
    test_sync_generation()
    test_async_generation()

2. 性能监控面板

# app/api/endpoints/monitoring.py
from fastapi import APIRouter, Depends
from app.utils.auth import admin_key_auth
import psutil
import torch
from app.model import WaifuDiffusionModel

router = APIRouter()

@router.get("/health", tags=["monitoring"])
async def health_check():
    """基础健康检查接口"""
    return {"status": "healthy", "service": "waifu-diffusion-api"}

@router.get("/metrics", dependencies=[Depends(admin_key_auth)], tags=["monitoring"])
async def get_metrics():
    """获取系统和模型性能指标"""
    # 系统指标
    cpu_usage = psutil.cpu_percent()
    memory = psutil.virtual_memory()
    disk = psutil.disk_usage('/')
    
    # GPU指标(如果可用)
    gpu_metrics = {}
    if torch.cuda.is_available():
        gpu_metrics = {
            "device_count": torch.cuda.device_count(),
            "current_device": torch.cuda.current_device(),
            "memory_allocated": torch.cuda.memory_allocated() / (1024 ** 3),  # GB
            "memory_reserved": torch.cuda.memory_reserved() / (1024 ** 3),    # GB
            "memory_utilization": f"{torch.cuda.memory_allocated() / torch.cuda.max_memory_allocated():.2%}"
        }
    
    # 模型指标
    model_metrics = {}
    try:
        model = WaifuDiffusionModel.get_instance()
        model_metrics = {
            "loaded": True,
            "device": next(model._pipeline.parameters()).device.type,
            "components": list(model._pipeline.components.keys())
        }
    except:
        model_metrics = {"loaded": False}
    
    return {
        "timestamp": psutil.time.time(),
        "system": {
            "cpu_usage_percent": cpu_usage,
            "memory": {
                "total_gb": memory.total / (1024 ** 3),
                "available_gb": memory.available / (1024 ** 3),
                "used_percent": memory.percent
            },
            "disk": {
                "total_gb": disk.total / (1024 ** 3),
                "used_gb": disk.used / (1024 ** 3),
                "used_percent": disk.percent
            }
        },
        "gpu": gpu_metrics,
        "model": model_metrics,
        "queue": {
            "pending_tasks": 0  # 实际实现需从Redis获取队列长度
        }
    }

结语:从个人工具到企业服务

通过本文的方案,你已完成waifu-diffusion从本地脚本到企业级API服务的蜕变。这个服务架构不仅适用于图像生成,还可扩展到其他AI模型的API化部署。

下一步建议

  1. 实现用户认证系统,支持多租户隔离
  2. 添加图像审核功能,过滤不当内容
  3. 开发Web管理界面,可视化监控和配置
  4. 实现模型版本控制,支持A/B测试

现在,你可以将这个强大的AI绘图能力集成到任何应用中,释放团队创造力!

本文所有代码均可直接运行,遇到问题可在评论区留言,作者将定期回复技术问题。

【免费下载链接】waifu-diffusion 【免费下载链接】waifu-diffusion 项目地址: https://ai.gitcode.com/mirrors/hakurei/waifu-diffusion

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值