ExecuTorch模型水印:知识产权保护机制

ExecuTorch模型水印:知识产权保护机制

【免费下载链接】executorch End-to-end solution for enabling on-device AI across mobile and edge devices for PyTorch models 【免费下载链接】executorch 项目地址: https://gitcode.com/GitHub_Trending/ex/executorch

引言:AI模型保护的迫切需求

在人工智能技术飞速发展的今天,深度学习模型已成为企业核心竞争力的重要组成部分。然而,模型盗用、非法复制和知识产权侵权问题日益严重。据行业统计,超过60%的AI企业曾遭遇模型泄露事件,造成平均数百万美元的经济损失。

ExecuTorch作为Meta推出的端到端设备端AI推理框架,为PyTorch模型提供了强大的部署解决方案。但在模型分发和部署过程中,如何有效保护模型知识产权成为亟待解决的问题。本文将深入探讨ExecuTorch框架中的模型水印技术,为开发者提供一套完整的知识产权保护方案。

ExecuTorch模型格式与保护基础

PTE文件格式解析

ExecuTorch使用专用的PTE(PyTorch ExecuTorch)文件格式存储优化后的模型。该格式基于FlatBuffers,具有以下结构特征:

mermaid

模型验证机制

ExecuTorch提供了强大的IR(Intermediate Representation)验证机制,确保模型的完整性和正确性:

# EXIR验证器示例
from executorch.exir.verification import EXIREdgeDialectVerifier

# 创建验证器实例
verifier = EXIREdgeDialectVerifier()

# 验证模型完整性
def validate_model_integrity(graph_module):
    try:
        verifier(graph_module)
        print("模型验证通过:完整性检查合格")
        return True
    except SpecViolationError as e:
        print(f"模型验证失败:{e}")
        return False

模型水印技术实现方案

静态水印:元数据嵌入

在PTE文件的ExtraTensorInfo中嵌入版权信息和水印数据:

import hashlib
import json
from datetime import datetime

def embed_watermark(tensor_info, owner_info, timestamp=None):
    """
    在张量信息中嵌入数字水印
    
    Args:
        tensor_info: ExtraTensorInfo对象
        owner_info: 所有者信息字典
        timestamp: 时间戳(可选)
    """
    if timestamp is None:
        timestamp = datetime.now().isoformat()
    
    # 创建水印数据
    watermark_data = {
        "owner": owner_info,
        "timestamp": timestamp,
        "signature": generate_signature(owner_info, timestamp)
    }
    
    # 将水印数据编码到fully_qualified_name字段
    watermark_str = json.dumps(watermark_data, ensure_ascii=False)
    tensor_info.fully_qualified_name = f"{tensor_info.fully_qualified_name}::watermark::{watermark_str}"
    
    return tensor_info

def generate_signature(data, timestamp, secret_key="default_secret"):
    """生成数字签名"""
    sign_data = f"{json.dumps(data)}{timestamp}{secret_key}"
    return hashlib.sha256(sign_data.encode()).hexdigest()

动态水印:运行时验证

在模型推理过程中动态验证水印信息:

class ModelWatermarkVerifier:
    def __init__(self, expected_owner_info, secret_key):
        self.expected_owner_info = expected_owner_info
        self.secret_key = secret_key
    
    def extract_watermark(self, tensor_name):
        """从张量名称中提取水印信息"""
        if "::watermark::" in tensor_name:
            parts = tensor_name.split("::watermark::")
            if len(parts) == 2:
                try:
                    return json.loads(parts[1])
                except json.JSONDecodeError:
                    return None
        return None
    
    def verify_watermark(self, program):
        """验证整个程序的水印完整性"""
        violations = []
        
        for execution_plan in program.execution_plan:
            for value in execution_plan.values:
                if hasattr(value.val, 'tensor') and value.val.tensor.extra_tensor_info:
                    tensor_info = value.val.tensor.extra_tensor_info
                    watermark = self.extract_watermark(tensor_info.fully_qualified_name)
                    
                    if watermark:
                        if not self.validate_signature(watermark):
                            violations.append({
                                'tensor': tensor_info.fully_qualified_name,
                                'reason': '签名验证失败'
                            })
        
        return len(violations) == 0, violations
    
    def validate_signature(self, watermark):
        """验证数字签名"""
        expected_signature = generate_signature(
            watermark['owner'], 
            watermark['timestamp'], 
            self.secret_key
        )
        return watermark['signature'] == expected_signature

隐式水印:权重扰动技术

通过在模型权重中引入微小的、特定的扰动来嵌入水印:

import torch
import numpy as np

def embed_weight_watermark(model_state_dict, watermark_bits, strength=1e-6):
    """
    在模型权重中嵌入隐式水印
    
    Args:
        model_state_dict: 模型状态字典
        watermark_bits: 要嵌入的水印位(二进制数组)
        strength: 扰动强度
    """
    watermarked_state_dict = model_state_dict.copy()
    bit_index = 0
    
    for name, param in watermarked_state_dict.items():
        if param.dim() >= 2:  # 只在多维参数中嵌入水印
            flat_param = param.view(-1)
            for i in range(len(flat_param)):
                if bit_index < len(watermark_bits):
                    # 根据水印位调整参数值
                    if watermark_bits[bit_index] == 1:
                        flat_param[i] += strength * torch.randn(1).item()
                    else:
                        flat_param[i] -= strength * torch.randn(1).item()
                    bit_index += 1
                else:
                    break
            if bit_index >= len(watermark_bits):
                break
    
    return watermarked_state_dict

def extract_weight_watermark(model_state_dict, original_state_dict, strength=1e-6):
    """
    从模型权重中提取水印
    """
    watermark_bits = []
    
    for (name, param), (orig_name, orig_param) in zip(
        model_state_dict.items(), original_state_dict.items()
    ):
        if param.dim() >= 2 and orig_param.dim() >= 2:
            flat_param = param.view(-1)
            flat_orig = orig_param.view(-1)
            
            for i in range(min(len(flat_param), len(flat_orig))):
                diff = flat_param[i] - flat_orig[i]
                # 根据差值判断水印位
                if abs(diff) > strength / 2:
                    watermark_bits.append(1 if diff > 0 else 0)
    
    return watermark_bits

多层次保护架构

保护层级设计

ExecuTorch模型水印保护采用多层次架构:

mermaid

完整性验证机制

class ModelIntegrityGuard:
    def __init__(self, expected_checksum, allowed_tolerance=1e-8):
        self.expected_checksum = expected_checksum
        self.allowed_tolerance = allowed_tolerance
    
    def compute_model_checksum(self, program):
        """计算模型的校验和"""
        checksum_data = []
        
        # 收集所有常量数据
        for buffer in program.constant_buffer:
            checksum_data.append(buffer.storage.tobytes())
        
        # 收集所有执行计划信息
        for plan in program.execution_plan:
            checksum_data.append(plan.name.encode())
            for op in plan.operators:
                checksum_data.append(op.name.encode())
                checksum_data.append(op.overload.encode())
        
        # 计算SHA-256校验和
        combined_data = b''.join(checksum_data)
        return hashlib.sha256(combined_data).hexdigest()
    
    def verify_integrity(self, program):
        """验证模型完整性"""
        current_checksum = self.compute_model_checksum(program)
        return current_checksum == self.expected_checksum
    
    def monitor_runtime_behavior(self, inputs, outputs):
        """监控运行时行为异常"""
        # 实现异常检测逻辑
        pass

实战:端到端保护方案

模型导出时的水印嵌入

from executorch import export
from executorch.exir import ExecutorchProgramManager
import torch.nn as nn

class ProtectedModelExporter:
    def __init__(self, owner_info, secret_key):
        self.owner_info = owner_info
        self.secret_key = secret_key
        self.watermark_verifier = ModelWatermarkVerifier(owner_info, secret_key)
    
    def export_with_protection(self, model, example_inputs, output_path):
        """导出带保护的模型"""
        
        # 1. 标准导出流程
        export_session = export.export(
            model=model,
            example_inputs=example_inputs,
            export_recipe=export.ExportRecipe()
        )
        
        # 2. 获取Executorch程序
        program = export_session.get_executorch_program()
        
        # 3. 嵌入水印
        self.embed_all_watermarks(program)
        
        # 4. 计算完整性校验和
        integrity_guard = ModelIntegrityGuard()
        checksum = integrity_guard.compute_model_checksum(program)
        
        # 5. 保存模型
        export_session.save_pte_file(output_path)
        
        return checksum
    
    def embed_all_watermarks(self, program):
        """在所有张量中嵌入水印"""
        for execution_plan in program.execution_plan:
            for i, value in enumerate(execution_plan.values):
                if hasattr(value.val, 'tensor') and value.val.tensor.extra_tensor_info:
                    tensor_info = value.val.tensor.extra_tensor_info
                    watermarked_info = embed_watermark(
                        tensor_info, 
                        self.owner_info,
                        datetime.now().isoformat()
                    )
                    value.val.tensor.extra_tensor_info = watermarked_info

运行时保护集成

class ProtectedModelRunner:
    def __init__(self, model_path, expected_checksum, owner_info, secret_key):
        self.model_path = model_path
        self.expected_checksum = expected_checksum
        self.owner_info = owner_info
        self.secret_key = secret_key
        
        # 加载模型
        self.program = self.load_model()
        
        # 初始化验证器
        self.integrity_guard = ModelIntegrityGuard(expected_checksum)
        self.watermark_verifier = ModelWatermarkVerifier(owner_info, secret_key)
    
    def load_model(self):
        """加载并验证模型"""
        # 实现模型加载逻辑
        pass
    
    def run_with_protection(self, inputs):
        """带保护的模型推理"""
        
        # 1. 验证模型完整性
        if not self.integrity_guard.verify_integrity(self.program):
            raise SecurityError("模型完整性验证失败")
        
        # 2. 验证水印
        is_valid, violations = self.watermark_verifier.verify_watermark(self.program)
        if not is_valid:
            raise SecurityError(f"水印验证失败:{violations}")
        
        # 3. 执行推理
        outputs = self.execute_model(inputs)
        
        # 4. 监控运行时行为
        self.monitor_runtime_behavior(inputs, outputs)
        
        return outputs
    
    def execute_model(self, inputs):
        """执行模型推理"""
        # 实现推理逻辑
        pass
    
    def monitor_runtime_behavior(self, inputs, outputs):
        """监控运行时异常行为"""
        # 实现行为监控逻辑
        pass

高级保护特性

时间戳与版本控制

class VersionAwareWatermark:
    def __init__(self):
        self.version_registry = {}
    
    def register_version(self, model_id, version_info, watermark_data):
        """注册模型版本信息"""
        self.version_registry[model_id] = {
            'version_info': version_info,
            'watermark_data': watermark_data,
            'timestamp': datetime.now().isoformat()
        }
    
    def verify_version_compatibility(self, program, expected_model_id):
        """验证模型版本兼容性"""
        extracted_watermarks = self.extract_all_watermarks(program)
        
        if expected_model_id not in self.version_registry:
            return False, "模型ID未注册"
        
        registered_data = self.version_registry[expected_model_id]
        
        # 检查水印一致性
        for watermark in extracted_watermarks:
            if watermark.get('model_id') == expected_model_id:
                if watermark.get('version_hash') != registered_data['version_info']['hash']:
                    return False, "版本哈希不匹配"
        
        return True, "版本验证通过"
    
    def extract_all_watermarks(self, program):
        """提取所有水印信息"""
        watermarks = []
        # 实现提取逻辑
        return watermarks

动态水印更新机制

class DynamicWatermarkManager:
    def __init__(self, update_interval=3600):  # 默认1小时更新一次
        self.update_interval = update_interval
        self.last_update = {}
    
    def should_update_watermark(self, model_id):
        """检查是否需要更新水印"""
        current_time = time.time()
        last_update = self.last_update.get(model_id, 0)
        
        return current_time - last_update >= self.update_interval
    
    def update_dynamic_watermark(self, program, model_id):
        """更新动态水印"""
        if self.should_update_watermark(model_id):
            # 生成新的动态水印
            dynamic_watermark = self.generate_dynamic_watermark(model_id)
            
            # 更新程序中的水印
            self.update_program_watermarks(program, dynamic_watermark)
            
            self.last_update[model_id] = time.time()
            return True
        return False
    
    def generate_dynamic_watermark(self, model_id):
        """生成动态水印数据"""
        return {
            'model_id': model_id,
            'timestamp': datetime.now().isoformat(),
            'nonce': os.urandom(16).hex(),
            'signature': self.generate_dynamic_signature(model_id)
        }

安全最佳实践

密钥管理策略

class SecureKeyManager:
    def __init__(self, key_storage_path=None):
        self.key_storage_path = key_storage_path
        self.keys = self.load_keys()
    
    def load_keys(self):
        """安全加载密钥"""
        keys = {}
        if self.key_storage_path and os.path.exists(self.key_storage_path):
            try:
                with open(self.key_storage_path, 'rb') as f:
                    encrypted_data = f.read()
                    decrypted_data = self.decrypt_data(encrypted_data)
                    keys = json.loads(decrypted_data)
            except Exception as e:
                print(f"密钥加载失败:{e}")
                keys = self.generate_new_keys()
        else:
            keys = self.generate_new_keys()
        
        return keys
    
    def generate_new_keys(self):
        """生成新密钥对"""
        return {
            'watermark_secret': secrets.token_hex(32),
            'integrity_secret': secrets.token_hex(32),
            'version_secret': secrets.token_hex(32)
        }
    
    def get_key(self, key_type):
        """获取特定类型的密钥"""
        return self.keys.get(key_type)
    
    def rotate_keys(self):
        """轮换密钥"""
        new_keys = self.generate_new_keys()
        self.keys.update(new_keys)
        self.save_keys()
    
    def save_keys(self):
        """安全保存密钥"""
        if self.key_storage_path:
            encrypted_data = self.encrypt_data(json.dumps(self.keys).encode())
            with open(self.key_storage_path, 'wb') as f:
                f.write(encrypted_data)

审计与日志记录

class ProtectionAuditLogger:
    def __init__(self, log_path=None):
        self.log_path = log_path
        self.audit_entries = []
    
    def log_verification_event(self, event_type, success, details=None):
        """记录验证事件"""
        audit_entry = {
            'timestamp': datetime.now().isoformat(),
            'event_type': event_type,
            'success': success,
            'details': details or {},
            'client_ip': self.get_client_ip(),
            'user_agent': self.get_user_agent()
        }
        
        self.audit_entries.append(audit_entry)
        
        # 实时写入日志文件
        if self.log_path:
            self.write_to_log(audit_entry)
    
    def write_to_log(self, entry):
        """写入日志文件"""
        log_line = json.dumps(entry) + '\n'
        with open(self.log_path, 'a', encoding='utf-8') as f:
            f.write(log_line)
    
    def get_security_report(self):
        """生成安全报告"""
        total_events = len(self.audit_entries)
        success_events = sum(1 for e in self.audit_entries if e['success'])
        failure_events = total_events - success_events
        
        return {
            'total_events': total_events,
            'success_rate': success_events / total_events if total_events > 0 else 0,
            'recent_failures': self.get_recent_failures(24),  # 最近24小时的失败
            'common_failure_types': self.get_common_failure_types()
        }

性能优化考虑

轻量级验证策略

class OptimizedWatermarkVerifier:
    def __init__(self, sampling_rate=0.1):  # 10%的采样率
        self.sampling_rate = sampling_rate
    
    def optimized_verify(self, program):
        """优化版水印验证(抽样检查)"""
        import random
        
        # 收集所有包含水印的张量
        watermarked_tensors = []
        for execution_plan in program.execution_plan:
            for value in execution_plan.values:
                if (hasattr(value.val, 'tensor') and 
                    value.val.tensor.extra_tensor_info and
                    "::watermark::" in value.val.tensor.extra_tensor_info.fully_qualified_name):
                    watermarked_tensors.append(value)
        
        # 随机抽样验证
        sample_size = max(1, int(len(watermarked_tensors) * self.sampling_rate))
        sampled_tensors = random.sample(watermarked_tensors, sample_size)
        
        violations = []
        for tensor_value in sampled_tensors:
            tensor_info = tensor_value.val.tensor.extra_tensor_info
            watermark = self.extract_watermark(tensor_info.fully_qualified_name)
            
            if watermark and not self.validate_signature(watermark):
                violations.append({
                    'tensor': tensor_info.fully_qualified_name,
                    'reason': '签名验证失败'
                })
        
        return len(violations) == 0, violations

缓存优化机制

【免费下载链接】executorch End-to-end solution for enabling on-device AI across mobile and edge devices for PyTorch models 【免费下载链接】executorch 项目地址: https://gitcode.com/GitHub_Trending/ex/executorch

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值