推荐开源项目:safe-control-gym——安全学习控制与强化学习的统一基准套件
项目介绍
safe-control-gym
是一个基于物理的 CartPole 和 Quadrotor 环境,采用了 OpenAI Gym 和 PyBullet 框架。该项目特别之处在于,它通过 CasADi 实现了符号化的先验动力学,专为学习型控制和基于模型/无模型的强化学习(RL)设计。这些环境不仅包括符号化安全约束,还实现了输入、参数和动力学干扰,用于测试控制方法的鲁棒性和泛化能力。
项目技术分析
核心技术栈
- OpenAI Gym:提供标准化的环境接口,便于算法开发和比较。
- PyBullet:一个高效的物理仿真引擎,支持复杂的动力学仿真。
- CasADi:用于符号计算和优化的库,帮助实现先验动力学模型。
主要功能
- 符号化动力学:通过 CasADi 实现的符号化模型,提供了对系统动态的深入理解。
- 安全约束:内置符号化安全约束,确保控制策略的安全性。
- 干扰测试:支持输入、参数和动力学干扰,验证控制策略的鲁棒性。
项目及技术应用场景
学习型控制
- 机器人控制:适用于各种机器人系统的学习型控制算法开发和测试。
- 自动驾驶:可用于自动驾驶车辆的动力学模型和控制策略研究。
强化学习
- 无人机控制:Quadrotor 环境可用于开发无人机的强化学习控制算法。
- 游戏AI:CartPole 环境可用于基础强化学习算法的验证和教学。
安全性研究
- 安全约束验证:内置的安全约束功能,可用于验证控制策略的安全性。
- 鲁棒性测试:通过干扰测试,评估控制策略在不同条件下的表现。
项目特点
1. 统一基准套件
safe-control-gym
提供了一个统一的基准套件,方便研究者比较不同控制算法的性能。
2. 丰富的控制器和过滤器
- 控制器:包括 PID、LQR、iLQR、线性 MPC、GP-MPC、SAC、PPO、DDPG、Safety Layer、RARL、RAP 等。
- 安全过滤器:包括 MPSC、CBF、神经网络 CBF 等。
3. 高效的仿真性能
与 OpenAI Cartpole 和 PyBullet Gym 的 Inverted Pendulum 环境相比,safe-control-gym
提供了更高的仿真效率和更多的安全特性。
4. 易于使用和扩展
- 安装简便:支持 Ubuntu 和 macOS,提供详细的安装指南。
- API友好:提供清晰的 API 文档和示例脚本,便于快速上手。
安装指南
克隆仓库
git clone https://github.com/utiasDSL/safe-control-gym.git
cd safe-control-gym
创建 Conda 环境(可选)
conda create -n safe python=3.10
conda activate safe
安装
python -m pip install --upgrade pip
python -m pip install -e .
安装依赖
conda install -c anaconda gmp
或
sudo apt-get install libgmp-dev
快速上手
3D Quadrotor Lemniscate 轨迹跟踪(PID)
cd ./examples/
python3 pid/pid_experiment.py \
--algo pid \
--task quadrotor \
--overrides \
./pid/config_overrides/quadrotor_3D/quadrotor_3D_tracking.yaml
Cartpole 稳定化(LQR)
cd ./examples/
python3 lqr/lqr_experiment.py \
--algo lqr \
--task cartpole \
--overrides \
./lqr/config_overrides/cartpole/cartpole_stabilization.yaml \
./lqr/config_overrides/cartpole/lqr_cartpole_stabilization.yaml
2D Quadrotor 轨迹跟踪(PPO)
cd ./examples/rl/
python3 rl_experiment.py \
--algo ppo \
--task quadrotor \
--overrides \
./config_overrides/quadrotor_2D/quadrotor_2D_track.yaml \
./config_overrides/quadrotor_2D/ppo_quadrotor_2D.yaml \
--kv_overrides \
algo_config.training=False
总结
safe-control-gym
是一个功能强大、易于使用的开源项目,适用于学习型控制和强化学习的研究。其丰富的控制器和安全特性,以及高效的仿真性能,使其成为相关领域研究者的理想选择。立即尝试 safe-control-gym
,开启你的安全学习控制之旅!
更多详细信息和示例代码,请访问 safe-control-gym GitHub 仓库。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考