LoRa Scripts 项目使用教程

LoRa Scripts 项目使用教程

lora-scriptsLoRA & Dreambooth training scripts & GUI use kohya-ss's trainer, for diffusion model.项目地址:https://gitcode.com/gh_mirrors/lo/lora-scripts

1. 项目的目录结构及介绍

LoRa Scripts 项目的目录结构如下:

lora-scripts/
├── README.md
├── loraSamplePy3.py
├── config/
│   └── settings.json
├── scripts/
│   ├── init.py
│   └── utils.py
└── tests/
    └── test_lora.py

目录介绍

  • README.md: 项目说明文档。
  • loraSamplePy3.py: 项目的启动文件。
  • config/: 配置文件目录。
    • settings.json: 项目的配置文件。
  • scripts/: 脚本目录,包含初始化脚本和工具脚本。
    • init.py: 初始化脚本。
    • utils.py: 工具脚本。
  • tests/: 测试目录,包含测试脚本。
    • test_lora.py: 测试脚本。

2. 项目的启动文件介绍

项目的启动文件是 loraSamplePy3.py。该文件主要负责启动和初始化 LoRa 模块,并提供与 LoRa 模块交互的接口。

启动文件主要功能

  • 初始化 LoRa 模块。
  • 提供发送和接收数据的功能。
  • 加载配置文件中的设置。

3. 项目的配置文件介绍

项目的配置文件位于 config/settings.json。该文件包含了项目运行所需的各种配置参数。

配置文件内容示例

{
  "lora_settings": {
    "baud_rate": 9600,
    "port": "/dev/ttyUSB0",
    "timeout": 5
  },
  "application_settings": {
    "log_level": "INFO",
    "log_file": "app.log"
  }
}

配置项介绍

  • lora_settings: LoRa 模块的配置参数。
    • baud_rate: 波特率。
    • port: 串口设备路径。
    • timeout: 超时时间。
  • application_settings: 应用程序的配置参数。
    • log_level: 日志级别。
    • log_file: 日志文件路径。

以上是 LoRa Scripts 项目的目录结构、启动文件和配置文件的详细介绍。希望这份教程能帮助你更好地理解和使用该项目。

lora-scriptsLoRA & Dreambooth training scripts & GUI use kohya-ss's trainer, for diffusion model.项目地址:https://gitcode.com/gh_mirrors/lo/lora-scripts

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### Lora Scripts Information and Resources For enhancing models like those based on Chinese-LLaMA-Alpaca with specific capabilities such as low-rank adaptation (LoRA), specialized scripts are necessary. LoRA is a technique that enables efficient parameter-efficient transfer learning by only updating a small number of parameters during fine-tuning[^1]. When integrating LoRA into an existing model setup, one can utilize libraries and frameworks designed specifically for this purpose. Hugging Face’s `transformers` library offers support for applying LoRA through its API interfaces which simplifies the process significantly. To implement LoRA effectively: #### Installation Requirements Ensure all dependencies required for running these scripts are installed correctly. This includes PyTorch along with other Python packages needed for handling large language models efficiently. ```bash pip install transformers accelerate peft ``` #### Applying LoRA During Fine-Tuning Below demonstrates how to apply LoRA when performing instruction-following fine-tuning similar to what was done in adapting Stanford Alpaca models[^2]. ```python from transformers import AutoModelForCausalLM, BitsAndBytesConfig import torch model_name_or_path = "your_model_path" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, ) base_model = AutoModelForCausalLM.from_pretrained(model_name_or_path, quantization_config=bnb_config, device_map={"":0}) peft_config = { "lora_r": 8, "lora_alpha": 32, "target_modules": ["q_proj", "v_proj"], } ``` This configuration allows for more efficient updates while maintaining performance gains from full fine-tuning processes. --related questions-- 1. What are some best practices for optimizing LoRA configurations? 2. How does LoRA compare against traditional methods of fine-tuning large language models? 3. Can you provide examples where LoRA has been successfully applied outside of academic settings? 4. Are there any limitations associated with using LoRA techniques within certain types of neural networks?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萧桔格Wilbur

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值