AgentScope扩展开发:自定义MCP客户端深度指南

AgentScope扩展开发:自定义MCP客户端深度指南

【免费下载链接】agentscope 【免费下载链接】agentscope 项目地址: https://gitcode.com/GitHub_Trending/ag/agentscope

概述

Model Context Protocol(MCP,模型上下文协议)是AgentScope框架的核心扩展机制,允许开发者将外部工具和服务无缝集成到智能体系统中。本文将深入探讨如何自定义MCP客户端,从基础概念到高级实现技巧。

MCP客户端架构解析

AgentScope提供了完整的MCP客户端架构,支持多种传输协议和连接模式:

mermaid

基础MCP客户端实现

1. 无状态HTTP客户端

from agentscope.mcp import HttpStatelessClient
import os

# 创建基础无状态客户端
weather_client = HttpStatelessClient(
    name="weather_service",
    transport="sse",  # 支持sse或streamable_http
    url="https://api.weather.com/mcp",
    headers={"Authorization": f"Bearer {os.environ['WEATHER_API_KEY']}"},
    timeout=30
)

2. 有状态Stdio客户端

from agentscope.mcp import StdioStatefulClient

# 创建进程式有状态客户端
database_client = StdioStatefulClient(
    name="database_tool",
    command="python",
    args=["-m", "database_mcp_server"],
    env={"DATABASE_URL": os.environ.get("DATABASE_URL")},
    cwd="/opt/mcp_servers",
    encoding="utf-8"
)

自定义MCP客户端开发指南

继承基础类实现自定义客户端

from agentscope.mcp import StatefulClientBase
from mcp import ClientSession, StdioServerParameters
import aiohttp
from typing import Literal

class CustomWebSocketClient(StatefulClientBase):
    """自定义WebSocket MCP客户端"""
    
    def __init__(
        self,
        name: str,
        ws_url: str,
        auth_token: str = None,
        reconnect_attempts: int = 3
    ) -> None:
        super().__init__(name=name)
        self.ws_url = ws_url
        self.auth_token = auth_token
        self.reconnect_attempts = reconnect_attempts
        self.ws_session = None
    
    async def connect(self) -> None:
        """建立WebSocket连接"""
        headers = {}
        if self.auth_token:
            headers["Authorization"] = f"Bearer {self.auth_token}"
        
        for attempt in range(self.reconnect_attempts):
            try:
                self.ws_session = await aiohttp.ClientSession().ws_connect(
                    self.ws_url,
                    headers=headers
                )
                # 初始化MCP会话
                read_stream = self.ws_session.receive()
                write_stream = self.ws_session.send_str
                
                self.session = ClientSession(read_stream, write_stream)
                await self.session.initialize()
                self.is_connected = True
                return
            except Exception as e:
                if attempt == self.reconnect_attempts - 1:
                    raise e
                await asyncio.sleep(2 ** attempt)
    
    async def close(self) -> None:
        """关闭连接"""
        if self.ws_session:
            await self.ws_session.close()
        await super().close()

实现自定义工具包装器

from agentscope.mcp import MCPToolFunction
from agentscope.tool import ToolResponse
from typing import Any, Callable
import asyncio

class RetryableMCPToolFunction(MCPToolFunction):
    """支持重试机制的MCP工具函数"""
    
    def __init__(
        self,
        mcp_name: str,
        tool: Any,
        wrap_tool_result: bool,
        max_retries: int = 3,
        retry_delay: float = 1.0,
        session: Any = None
    ):
        super().__init__(mcp_name, tool, wrap_tool_result, session=session)
        self.max_retries = max_retries
        self.retry_delay = retry_delay
    
    async def __call__(self, **kwargs: Any) -> Any:
        for attempt in range(self.max_retries):
            try:
                result = await super().__call__(**kwargs)
                return result
            except Exception as e:
                if attempt == self.max_retries - 1:
                    raise e
                await asyncio.sleep(self.retry_delay * (2 ** attempt))

高级功能实现

1. 工具发现与缓存机制

from agentscope.mcp import StatefulClientBase
from typing import List, Dict
import mcp.types
from datetime import datetime, timedelta

class CachingMCPClient(StatefulClientBase):
    """带工具缓存功能的MCP客户端"""
    
    def __init__(self, name: str, cache_ttl: int = 300):
        super().__init__(name=name)
        self.cache_ttl = cache_ttl
        self._tools_cache = None
        self._cache_timestamp = None
    
    async def list_tools(self) -> List[mcp.types.Tool]:
        """带缓存的工具列表获取"""
        current_time = datetime.now()
        
        if (self._tools_cache and self._cache_timestamp and
            current_time - self._cache_timestamp < timedelta(seconds=self.cache_ttl)):
            return self._tools_cache
        
        tools = await super().list_tools()
        self._tools_cache = tools
        self._cache_timestamp = current_time
        return tools
    
    async def get_tool_by_pattern(self, pattern: str) -> List[mcp.types.Tool]:
        """通过模式匹配查找工具"""
        tools = await self.list_tools()
        return [tool for tool in tools if pattern.lower() in tool.name.lower()]

2. 批量工具执行器

from typing import List, Dict, Any
import asyncio
from concurrent.futures import ThreadPoolExecutor

class BatchMCPExecutor:
    """MCP工具批量执行器"""
    
    def __init__(self, max_workers: int = 10):
        self.executor = ThreadPoolExecutor(max_workers=max_workers)
    
    async def execute_batch(
        self,
        client: StatefulClientBase,
        tool_name: str,
        parameters_list: List[Dict[str, Any]]
    ) -> List[Any]:
        """批量执行相同工具的不同参数"""
        
        async def execute_single(params: Dict[str, Any]):
            tool_func = await client.get_callable_function(tool_name)
            return await tool_func(**params)
        
        # 使用线程池执行批量任务
        loop = asyncio.get_event_loop()
        tasks = [
            loop.run_in_executor(self.executor, execute_single, params)
            for params in parameters_list
        ]
        
        return await asyncio.gather(*tasks, return_exceptions=True)

实战案例:自定义天气服务MCP客户端

from agentscope.mcp import HttpStatelessClient
from pydantic import BaseModel, Field
from typing import List, Optional
import aiohttp
import json

class WeatherData(BaseModel):
    temperature: float = Field(description="当前温度")
    humidity: int = Field(description="湿度百分比")
    condition: str = Field(description="天气状况")
    location: str = Field(description="地理位置")

class CustomWeatherClient(HttpStatelessClient):
    """自定义天气服务MCP客户端"""
    
    def __init__(self, api_key: str):
        super().__init__(
            name="custom_weather",
            transport="streamable_http",
            url="https://api.weatherapi.com/v1/current.json",
            headers={"Content-Type": "application/json"}
        )
        self.api_key = api_key
    
    async def get_weather(self, location: str) -> WeatherData:
        """获取指定位置的天气数据"""
        params = {
            "key": self.api_key,
            "q": location,
            "aqi": "no"
        }
        
        async with aiohttp.ClientSession() as session:
            async with session.get(self.url, params=params) as response:
                data = await response.json()
                
                return WeatherData(
                    temperature=data["current"]["temp_c"],
                    humidity=data["current"]["humidity"],
                    condition=data["current"]["condition"]["text"],
                    location=location
                )
    
    async def get_callable_function(self, func_name: str, wrap_tool_result: bool = True):
        """重写工具获取方法"""
        if func_name == "get_weather":
            return self.get_weather
        return await super().get_callable_function(func_name, wrap_tool_result)

性能优化与最佳实践

连接池管理

from agentscope.mcp import HttpStatelessClient
from aiohttp import ClientSession, TCPConnector
from typing import Dict

class ConnectionPoolMCPClient(HttpStatelessClient):
    """带连接池的MCP客户端"""
    
    _session_pool: Dict[str, ClientSession] = {}
    
    def __init__(self, name: str, transport: str, url: str, headers: Dict = None):
        super().__init__(name, transport, url, headers)
        
        # 创建或复用连接池
        pool_key = f"{transport}_{url}"
        if pool_key not in self._session_pool:
            connector = TCPConnector(limit=100, limit_per_host=10)
            self._session_pool[pool_key] = ClientSession(connector=connector)
        
        self.session = self._session_pool[pool_key]
    
    @classmethod
    async def close_all_sessions(cls):
        """关闭所有连接池会话"""
        for session in cls._session_pool.values():
            await session.close()
        cls._session_pool.clear()

监控与指标收集

from prometheus_client import Counter, Histogram
import time
from typing import Callable, Any

# 定义监控指标
mcp_requests_total = Counter('mcp_requests_total', 'Total MCP requests', ['client', 'tool'])
mcp_request_duration = Histogram('mcp_request_duration_seconds', 'MCP request duration', ['client'])

def monitor_mcp_tool(func: Callable) -> Callable:
    """MCP工具监控装饰器"""
    async def wrapper(*args, **kwargs):
        client_name = args[0].name if args else 'unknown'
        tool_name = kwargs.get('func_name', 'unknown')
        
        start_time = time.time()
        mcp_requests_total.labels(client=client_name, tool=tool_name).inc()
        
        try:
            result = await func(*args, **kwargs)
            duration = time.time() - start_time
            mcp_request_duration.labels(client=client_name).observe(duration)
            return result
        except Exception as e:
            duration = time.time() - start_time
            mcp_request_duration.labels(client=client_name).observe(duration)
            raise e
    
    return wrapper

# 应用监控装饰器
MCPClientBase.get_callable_function = monitor_mcp_tool(MCPClientBase.get_callable_function)

故障排除与调试技巧

常见问题解决方案

问题类型症状解决方案
连接超时客户端无法建立连接检查网络配置,增加超时时间
认证失败401/403错误验证API密钥和权限设置
协议不匹配传输协议错误确认服务端支持的传输类型
内存泄漏连接数持续增长实现连接池和资源清理

调试工具函数

from agentscope.mcp import MCPClientBase
import logging
from typing import Any

class DebuggableMCPClient(MCPClientBase):
    """可调试的MCP客户端"""
    
    def __init__(self, name: str, debug: bool = False):
        super().__init__(name)
        self.debug = debug
        self.logger = logging.getLogger(f"mcp.{name}")
    
    async def get_callable_function(self, func_name: str, wrap_tool_result: bool = True):
        if self.debug:
            self.logger.debug(f"Requesting tool: {func_name}")
        
        tool_func = await super().get_callable_function(func_name, wrap_tool_result)
        
        if self.debug:
            async def debug_wrapper(**kwargs):
                self.logger.debug(f"Calling {func_name} with args: {kwargs}")
                try:
                    result = await tool_func(**kwargs)
                    self.logger.debug(f"Tool {func_name} succeeded: {result}")
                    return result
                except Exception as e:
                    self.logger.error(f"Tool {func_name} failed: {e}")
                    raise
        
            return debug_wrapper
        
        return tool_func

总结

自定义MCP客户端是AgentScope框架扩展的核心能力,通过本文的深入讲解,您应该能够:

  1. 理解MCP架构:掌握有状态和无状态客户端的区别与应用场景
  2. 实现自定义客户端:从基础继承到高级功能扩展
  3. 优化性能:通过连接池、缓存和监控提升系统效率
  4. 处理复杂场景:应对认证、重试、批量处理等实际需求

MCP客户端的自定义能力为AgentScope生态提供了无限可能,让您能够将任何外部服务无缝集成到智能体工作流中,构建更加强大和灵活的AI应用系统。

【免费下载链接】agentscope 【免费下载链接】agentscope 项目地址: https://gitcode.com/GitHub_Trending/ag/agentscope

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值