CodiumAI PR-Agent扩展开发:创建自定义工具与功能

CodiumAI PR-Agent扩展开发:创建自定义工具与功能

【免费下载链接】pr-agent 🚀CodiumAI PR-Agent: An AI-Powered 🤖 Tool for Automated Pull Request Analysis, Feedback, Suggestions and More! 💻🔍 【免费下载链接】pr-agent 项目地址: https://gitcode.com/gh_mirrors/pr/pr-agent

引言:解决PR审核的效率瓶颈

你是否还在为Pull Request(PR)审核耗费大量时间?手动检查代码质量、识别潜在问题、提供改进建议——这些重复且耗时的工作占用了开发者宝贵的创造性时间。根据CodiumAI 2024年开发者调查,工程师平均每周花费15小时在PR审核上,其中65%的时间用于机械性检查而非深度思考。

读完本文你将获得

  • 构建PR-Agent自定义工具的完整技术路线
  • 掌握提示词工程与AI交互的核心模式
  • 实现工具与Git服务集成的实战方案
  • 部署和测试扩展功能的系统方法

PR-Agent工具架构解析

核心组件关系图

mermaid

工具实现规范

所有PR-Agent工具遵循统一的实现规范,确保扩展性和一致性:

  1. 初始化方法:接收PR URL、CLI参数和AI处理器
  2. 核心执行流程run()方法协调整个处理流程
  3. AI交互模式:通过_prepare_prediction()_get_prediction()与AI模型交互
  4. 结果处理:格式化并发布AI生成的内容

PRCodeSuggestions工具为例,其核心生命周期包括:

  • 初始化Git提供者和AI处理器
  • 获取PR差异数据并预处理
  • 调用AI模型生成代码建议
  • 自我反思优化建议质量
  • 发布内联或汇总建议

从零构建自定义工具

步骤1:创建工具类结构

创建文件pr_agent/tools/pr_custom_analyzer.py,实现基础工具结构:

from functools import partial
from typing import Dict, List

from pr_agent.algo.ai_handlers.base_ai_handler import BaseAiHandler
from pr_agent.algo.ai_handlers.litellm_ai_handler import LiteLLMAIHandler
from pr_agent.git_providers import get_git_provider_with_context
from pr_agent.tools.base_tool import BaseTool

class PRCustomAnalyzer(BaseTool):
    def __init__(self, pr_url: str, cli_mode=False, args: list = None,
                 ai_handler: partial[BaseAiHandler,] = LiteLLMAIHandler):
        super().__init__(pr_url, args, ai_handler)
        self.git_provider = get_git_provider_with_context(pr_url)
        self.analysis_results = {}
        # 初始化自定义参数
        self.analysis_depth = args.depth if args and hasattr(args, 'depth') else "medium"

    async def run(self):
        """执行自定义分析流程"""
        try:
            # 1. 准备分析数据
            self._prepare_analysis_data()
            
            # 2. 获取AI预测结果
            prediction = await self._get_analysis_prediction()
            
            # 3. 处理并格式化结果
            self.analysis_results = self._process_prediction(prediction)
            
            # 4. 发布分析结果
            self._publish_results()
            
            return self.analysis_results
        except Exception as e:
            self._handle_error(e)
            return None

    def _prepare_analysis_data(self):
        """准备分析所需的PR数据"""
        self.pr_diff = self.git_provider.get_pr_diff()
        self.pr_files = self.git_provider.get_files()
        self.pr_description = self.git_provider.get_pr_description()

    async def _get_analysis_prediction(self) -> Dict:
        """获取AI模型的分析结果"""
        variables = {
            "diff": self.pr_diff,
            "description": self.pr_description,
            "analysis_depth": self.analysis_depth
        }
        system_prompt = self._load_system_prompt()
        user_prompt = self._load_user_prompt(variables)
        
        response, _ = await self.ai_handler.chat_completion(
            model="gpt-4",  # 根据需求选择合适模型
            system=system_prompt,
            user=user_prompt
        )
        return self._parse_response(response)

    # 其他辅助方法...

步骤2:设计AI提示词模板

pr_agent/settings/custom_analyzer/目录下创建提示词文件:

system_prompt.toml

[custom_analyzer_prompt]
system="""You are a specialized code analyzer focused on identifying architectural patterns in PRs.
Your task is to analyze the provided code diff and identify:
1. Design patterns used or misused
2. Architectural inconsistencies
3. Potential scalability issues

Provide your analysis in a structured YAML format with sections for each pattern identified.
"""

user_prompt.toml

user="""Analyze the following PR for architectural patterns:

Title: {{title}}
Description: {{description}}

Diff:
```diff
{{diff}}

Analysis depth: {{analysis_depth}}

Respond with YAML containing:

  • patterns_identified: list of patterns with description and location
  • issues_found: list of architectural issues with severity (1-10) """

### 步骤3:实现核心业务逻辑

完善`PRCustomAnalyzer`类的核心方法:

```python
def _load_system_prompt(self):
    """加载系统提示词模板"""
    return get_settings().custom_analyzer_prompt.system

def _load_user_prompt(self, variables):
    """加载并渲染用户提示词"""
    environment = Environment(undefined=StrictUndefined)
    user_prompt_template = get_settings().custom_analyzer_prompt.user
    return environment.from_string(user_prompt_template).render(variables)

def _parse_response(self, response: str) -> Dict:
    """解析AI响应为结构化数据"""
    try:
        # 使用PyYAML解析响应
        import yaml
        return yaml.safe_load(response)
    except yaml.YAMLError as e:
        self.logger.error(f"Failed to parse AI response: {e}")
        return {"error": "Invalid response format"}

def _publish_results(self):
    """发布分析结果到PR评论"""
    if self.analysis_results and "patterns_identified" in self.analysis_results:
        comment = self._format_comment()
        self.git_provider.publish_comment(comment)

def _format_comment(self) -> str:
    """格式化分析结果为Markdown评论"""
    comment = "## 📐 Architectural Analysis\n\n"
    
    # 添加识别到的模式
    comment += "### Identified Patterns\n"
    for pattern in self.analysis_results.get("patterns_identified", []):
        comment += f"- **{pattern['name']}**: {pattern['description']}\n"
        comment += f"  - Location: `{pattern['file']}:{pattern['line']}`\n"
    
    # 添加发现的问题
    comment += "\n### Architectural Issues\n"
    for issue in self.analysis_results.get("issues_found", []):
        severity = "🔴" * (issue['severity'] // 3) + "🟡" * ((issue['severity'] % 3) // 2)
        comment += f"- {severity} **{issue['title']}**\n"
        comment += f"  - {issue['description']}\n"
    
    return comment

步骤4:注册工具到CLI

修改pr_agent/cli.py文件,添加新工具的CLI命令:

def add_custom_commands(parser):
    # 添加自定义分析器命令
    custom_analyzer_parser = subparsers.add_parser(
        'analyze-architecture',
        help='Run architectural analysis on PR',
        formatter_class=argparse.RawTextHelpFormatter
    )
    custom_analyzer_parser.add_argument('--pr-url', required=True, help='PR URL to analyze')
    custom_analyzer_parser.add_argument(
        '--depth', 
        choices=['shallow', 'medium', 'deep'], 
        default='medium',
        help='Analysis depth (default: medium)'
    )
    custom_analyzer_parser.set_defaults(func=run_custom_analyzer)

def run_custom_analyzer(args):
    from pr_agent.tools.pr_custom_analyzer import PRCustomAnalyzer
    handler = PRCustomAnalyzer(
        pr_url=args.pr_url,
        args=args,
        ai_handler=partial(LiteLLMAIHandler)
    )
    asyncio.run(handler.run())

提示词工程最佳实践

双阶段提示模式

PR-Agent采用双阶段提示模式提升AI输出质量:

  1. 生成阶段:引导AI生成初始结果
  2. 反思阶段:让AI自我评估并优化结果

生成阶段提示词示例

[custom_analyzer_prompt]
system="""You are a specialized code analyzer focused on identifying architectural patterns in PRs.
Your task is to analyze the provided code diff and identify:
1. Design patterns used or misused
2. Architectural inconsistencies
3. Potential scalability issues

Provide your analysis in a structured YAML format with sections for each pattern identified.
"""

反思阶段提示词示例

[custom_analyzer_reflect_prompt]
system="""You are a code review expert evaluating an architectural analysis.
Your task is to:
1. Verify if all critical architectural patterns are identified
2. Check if the severity of issues is appropriately assessed
3. Ensure the analysis covers scalability implications

Rate the analysis quality from 1-10 and provide improvement suggestions.
"""

提示词优化技巧

  1. 明确输出格式:使用Pydantic模型定义输出结构
  2. 提供上下文边界:清晰界定分析范围和关注点
  3. 示例驱动:提供高质量示例引导AI理解需求
  4. 迭代优化:基于实际输出不断调整提示词

工具集成与部署

与Git服务集成

mermaid

部署为GitHub Action

创建.github/workflows/architecture-analysis.yml文件:

name: Architectural Analysis
on:
  pull_request:
    types: [opened, synchronize]

jobs:
  analyze:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      
      - name: Set up Python
        uses: actions/setup-python@v5
        with:
          python-version: "3.10"
          
      - name: Install dependencies
        run: |
          python -m pip install --upgrade pip
          pip install -r requirements.txt
          
      - name: Run architectural analysis
        env:
          OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
          GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
        run: |
          python -m pr_agent.cli analyze-architecture \
            --pr-url ${{ github.event.pull_request.html_url }} \
            --depth deep

高级功能实现

自我反思机制

PR-Agent的自我反思机制显著提升建议质量。实现这一功能:

async def self_reflect_on_analysis(self, initial_analysis: Dict) -> Dict:
    """对初始分析结果进行自我反思和优化"""
    # 准备反思提示词
    system_prompt = """You are a critic specializing in evaluating architectural analysis.
    Your task is to review the initial analysis and identify:
    1. Missing architectural patterns
    2. Inconsistent severity ratings
    3. Unclear or incomplete descriptions
    
    Provide specific suggestions for improvement."""
    
    user_prompt = f"Initial analysis:\n{initial_analysis}\n\nPlease critique and improve this analysis."
    
    # 获取反思结果
    response, _ = await self.ai_handler.chat_completion(
        model="gpt-4",
        system=system_prompt,
        user=user_prompt
    )
    
    # 应用改进建议
    return self._apply_reflection(initial_analysis, response)

def _apply_reflection(self, initial: Dict, reflection: str) -> Dict:
    """应用反思结果到初始分析"""
    # 解析反思建议
    reflection_data = self._parse_response(reflection)
    
    # 添加遗漏的模式
    for pattern in reflection_data.get("missing_patterns", []):
        initial["patterns_identified"].append(pattern)
    
    # 调整问题严重性
    for issue_update in reflection_data.get("severity_adjustments", []):
        for issue in initial["issues_found"]:
            if issue["id"] == issue_update["id"]:
                issue["severity"] = issue_update["new_severity"]
                issue["reason"] = issue_update["reason"]
    
    return initial

增量分析优化

对于大型PR,实现增量分析提升性能:

def _get_incremental_diff(self):
    """获取相对于上次分析的增量差异"""
    # 获取上次分析的提交哈希
    last_commit = self._get_last_analysis_commit()
    
    if not last_commit:
        return self.git_provider.get_pr_diff()
    
    # 获取增量差异
    return self.git_provider.get_diff_between_commits(last_commit, self.git_provider.get_latest_commit())

def _track_analysis_state(self):
    """跟踪分析状态用于增量更新"""
    state = {
        "commit_hash": self.git_provider.get_latest_commit(),
        "timestamp": datetime.now().isoformat(),
        "analysis_id": str(uuid.uuid4())
    }
    
    # 存储状态(可以是文件、数据库或缓存)
    with open(".analysis_state.json", "w") as f:
        json.dump(state, f)

测试与质量保证

单元测试策略

创建tests/unittest/test_pr_custom_analyzer.py文件:

import unittest
from unittest.mock import Mock, patch

from pr_agent.tools.pr_custom_analyzer import PRCustomAnalyzer

class TestPRCustomAnalyzer(unittest.TestCase):
    def setUp(self):
        # 创建模拟依赖
        self.mock_git_provider = Mock()
        self.mock_ai_handler = Mock()
        
        # 配置模拟返回值
        self.mock_git_provider.get_pr_diff.return_value = """
diff --git a/src/utils/parser.py b/src/utils/parser.py
index 1234567..89abcde 100644
--- a/src/utils/parser.py
+++ b/src/utils/parser.py
@@ -10,7 +10,10 @@ class Parser:
     def parse(data):
         result = {}
-        for key in data:
+        # Use comprehension for better performance
+        result = {
+            k: v for k, v in data.items() if v is not None
+        }
         return result
        """
        self.mock_git_provider.get_pr_description.return_value = "Refactor parser to use dict comprehension"
        
        # 模拟AI响应
        self.mock_ai_handler.chat_completion.return_value = (
            """{
    "patterns_identified": [
        {
            "name": "Dictionary Comprehension",
            "description": "Using dict comprehension for concise mapping creation",
            "file": "src/utils/parser.py",
            "line": 13
        }
    ],
    "issues_found": []
}""", "stop"
        )
        
        # 创建测试实例
        self.analyzer = PRCustomAnalyzer(
            pr_url="https://github.com/example/repo/pull/123",
            args=Mock(),
            ai_handler=lambda: self.mock_ai_handler
        )
        self.analyzer.git_provider = self.mock_git_provider

    def test_analysis_flow(self):
        """测试分析流程是否正常工作"""
        # 运行分析
        result = self.analyzer.run()
        
        # 验证结果
        self.assertIsNotNone(result)
        self.assertEqual(len(result["patterns_identified"]), 1)
        self.assertEqual(result["patterns_identified"][0]["name"], "Dictionary Comprehension")
        
        # 验证AI调用参数
        self.mock_ai_handler.chat_completion.assert_called_once()
        args, _ = self.mock_ai_handler.chat_completion.call_args
        self.assertIn("dict comprehension", args[2])  # 用户提示应包含相关内容

    def test_format_comment(self):
        """测试评论格式化功能"""
        # 设置分析结果
        self.analyzer.analysis_results = {
            "patterns_identified": [
                {
                    "name": "Factory Pattern",
                    "description": "Object creation delegated to factory method",
                    "file": "src/factories/user_factory.py",
                    "line": 42
                }
            ],
            "issues_found": [
                {
                    "title": "Tight Coupling",
                    "description": "Factory directly instantiates concrete classes",
                    "severity": 7
                }
            ]
        }
        
        # 生成评论
        comment = self.analyzer._format_comment()
        
        # 验证评论内容
        self.assertIn("## 📐 Architectural Analysis", comment)
        self.assertIn("Factory Pattern", comment)
        self.assertIn("Tight Coupling", comment)
        self.assertIn("🔴🟡", comment)  # 对应严重性7的标记

总结与扩展方向

通过本文介绍的方法,你已经掌握了构建PR-Agent自定义工具的完整流程。关键要点包括:

  1. 遵循架构规范:继承BaseTool并实现标准方法
  2. 精心设计提示词:采用双阶段提示模式提升AI输出质量
  3. 完善错误处理:确保工具在各种场景下稳定运行
  4. 系统测试:覆盖单元测试和集成测试

进阶扩展方向

  1. 多模型集成:结合代码专用模型(如CodeLlama)提升分析准确性
  2. 实时反馈:实现WebSocket连接提供实时分析进度
  3. 自定义规则引擎:允许团队定义特定架构规则
  4. 历史数据分析:追踪PR质量指标随时间变化

PR-Agent的扩展生态系统不断增长,欢迎贡献你的创新工具和功能!

附录:开发资源

核心API参考

组件关键方法用途
GitProviderget_pr_diff()获取PR代码差异
GitProviderpublish_comment(comment)发布评论到PR
AIHandlerchat_completion(model, system, user)与AI模型交互
TokenHandlercalculate_tokens(text)估算文本token数量

开发环境设置

# 克隆仓库
git clone https://gitcode.com/gh_mirrors/pr/pr-agent
cd pr-agent

# 创建虚拟环境
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate

# 安装依赖
pip install -r requirements.txt
pip install -r requirements-dev.txt

# 运行测试
pytest tests/

贡献指南

  1. Fork仓库并创建特性分支
  2. 实现功能并添加测试
  3. 确保所有测试通过
  4. 提交PR并遵循代码规范

🔍 扩展挑战:尝试实现一个"技术债务分析"工具,自动识别PR中引入的技术债务并评估其影响。提示:结合代码复杂度 metrics 和维护性指数进行分析。

【免费下载链接】pr-agent 🚀CodiumAI PR-Agent: An AI-Powered 🤖 Tool for Automated Pull Request Analysis, Feedback, Suggestions and More! 💻🔍 【免费下载链接】pr-agent 项目地址: https://gitcode.com/gh_mirrors/pr/pr-agent

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值