Hmily容器化部署:Docker Compose一键启动方案
【免费下载链接】hmily Distributed transaction solutions 项目地址: https://gitcode.com/gh_mirrors/hm/hmily
分布式事务部署的终极痛点解决方案
你是否还在为Hmily分布式事务框架的部署而头疼?面对复杂的微服务架构、繁琐的配置步骤和容器间网络通信难题,即使是资深开发者也常常耗费数小时甚至数天才能完成环境搭建。本文将为你提供一套Docker Compose一键启动方案,彻底解决这些痛点,让你在10分钟内完成Hmily分布式事务环境的部署与验证。
读完本文后,你将获得:
- 一套完整的Hmily容器化部署架构设计
- Docker Compose配置文件与环境变量优化方案
- 支持TCC/TAC/XA三种模式的多容器协调策略
- 分布式事务场景的自动化测试与监控方法
- 生产环境部署的性能调优与高可用保障
Hmily容器化架构设计
整体架构概览
Hmily作为金融级分布式事务解决方案,其容器化部署需要考虑服务解耦、状态管理和网络通信三大核心问题。以下是基于Docker Compose的多容器架构设计:
容器组件说明
| 容器名称 | 镜像来源 | 核心功能 | 资源需求 | 依赖服务 |
|---|---|---|---|---|
| hmily-order | 自定义构建 | 订单服务,实现分布式事务发起 | 2核4G | MySQL, Redis, Eureka |
| hmily-account | 自定义构建 | 账户服务,处理资金扣减 | 1核2G | MySQL, ZooKeeper |
| hmily-inventory | 自定义构建 | 库存服务,处理商品库存管理 | 1核2G | MySQL, ZooKeeper |
| hmily-eureka | 官方镜像 | 服务注册与发现 | 1核1G | - |
| mysql | 官方镜像 | 业务数据与事务日志存储 | 2核4G | - |
| redis | 官方镜像 | 分布式锁与缓存 | 1核2G | - |
| zookeeper | 官方镜像 | Dubbo服务注册中心 | 1核2G | - |
| etcd | 官方镜像 | 配置中心 | 1核2G | - |
| prometheus | 官方镜像 | 监控指标收集 | 2核4G | - |
| grafana | 官方镜像 | 监控数据可视化 | 1核2G | Prometheus |
环境准备与依赖检查
系统要求
部署Hmily容器化环境前,请确保你的系统满足以下要求:
- Docker Engine 20.10.0+
- Docker Compose 2.0.0+
- 至少8GB可用内存
- 20GB可用磁盘空间
- 网络连接通畅(需拉取基础镜像)
依赖检查脚本
创建以下脚本检查系统环境是否满足要求:
#!/bin/bash
set -e
# 检查Docker是否安装
if ! command -v docker &> /dev/null; then
echo "错误: Docker未安装,请先安装Docker"
exit 1
fi
# 检查Docker Compose是否安装
if ! command -v docker-compose &> /dev/null; then
echo "错误: Docker Compose未安装,请先安装Docker Compose"
exit 1
fi
# 检查Docker版本
DOCKER_VERSION=$(docker --version | awk '{print $3}' | cut -d',' -f1)
if ! echo "$DOCKER_VERSION" | grep -qE '^20\.10\.'; then
echo "警告: Docker版本建议20.10.0+,当前版本为$DOCKER_VERSION"
fi
# 检查内存
MEMORY_AVAILABLE=$(free -g | awk '/Mem:/{print $2}')
if [ "$MEMORY_AVAILABLE" -lt 8 ]; then
echo "错误: 系统内存不足,至少需要8GB内存"
exit 1
fi
# 检查磁盘空间
DISK_AVAILABLE=$(df -P . | awk 'NR==2{print $4}')
if [ "$DISK_AVAILABLE" -lt 20000000 ]; then
echo "错误: 当前目录所在磁盘空间不足,至少需要20GB可用空间"
exit 1
fi
echo "环境检查通过,可以开始部署Hmily容器化环境"
将以上脚本保存为check_env.sh,执行chmod +x check_env.sh && ./check_env.sh进行环境检查。
Docker Compose配置实现
项目目录结构
首先创建以下目录结构存放配置文件:
hmily-docker/
├── docker-compose.yml # 主编排文件
├── .env # 环境变量配置
├── config/ # 应用配置文件
│ ├── hmily.yml # Hmily核心配置
│ ├── order.yml # 订单服务配置
│ ├── account.yml # 账户服务配置
│ └── inventory.yml # 库存服务配置
├── sql/ # 数据库初始化脚本
│ └── init.sql # 表结构与测试数据
├── docker/ # 自定义Dockerfile
│ ├── order/
│ ├── account/
│ └── inventory/
└── prometheus/ # 监控配置
└── prometheus.yml
核心配置文件
docker-compose.yml
version: '3.8'
services:
# 基础设施服务
mysql:
image: mysql:8.0.28
container_name: hmily-mysql
restart: always
environment:
MYSQL_ROOT_PASSWORD: ${MYSQL_ROOT_PASSWORD}
MYSQL_DATABASE: ${HMILY_DB_NAME}
MYSQL_USER: ${HMILY_DB_USER}
MYSQL_PASSWORD: ${HMILY_DB_PASSWORD}
ports:
- "3306:3306"
volumes:
- ./sql/init.sql:/docker-entrypoint-initdb.d/init.sql
- mysql-data:/var/lib/mysql
networks:
- hmily-network
healthcheck:
test: ["CMD", "mysqladmin", "ping", "-h", "localhost", "-u${HMILY_DB_USER}", "-p${HMILY_DB_PASSWORD}"]
interval: 10s
timeout: 5s
retries: 5
redis:
image: redis:6.2.6
container_name: hmily-redis
restart: always
ports:
- "6379:6379"
volumes:
- redis-data:/data
networks:
- hmily-network
command: redis-server --requirepass ${REDIS_PASSWORD}
healthcheck:
test: ["CMD", "redis-cli", "-a", "${REDIS_PASSWORD}", "ping"]
interval: 10s
timeout: 5s
retries: 5
zookeeper:
image: zookeeper:3.7.0
container_name: hmily-zookeeper
restart: always
ports:
- "2181:2181"
volumes:
- zookeeper-data:/data
- zookeeper-datalog:/datalog
networks:
- hmily-network
healthcheck:
test: ["CMD", "zkServer.sh", "status"]
interval: 10s
timeout: 5s
retries: 5
etcd:
image: bitnami/etcd:3.5.4
container_name: hmily-etcd
restart: always
environment:
ALLOW_NONE_AUTHENTICATION: "yes"
ETCD_ADVERTISE_CLIENT_URLS: http://etcd:2379
ports:
- "2379:2379"
volumes:
- etcd-data:/bitnami/etcd
networks:
- hmily-network
healthcheck:
test: ["CMD", "etcdctl", "endpoint", "health"]
interval: 10s
timeout: 5s
retries: 5
eureka:
image: springcloud/eureka:2.2.6.RELEASE
container_name: hmily-eureka
restart: always
ports:
- "8761:8761"
environment:
EUREKA_CLIENT_REGISTER_WITH_EUREKA: "false"
EUREKA_CLIENT_FETCH_REGISTRY: "false"
EUREKA_SERVER_ENABLE_SELF_PRESERVATION: "false"
networks:
- hmily-network
healthcheck:
test: ["CMD", "wget", "--no-verbose", "--tries=1", "--spider", "http://localhost:8761/actuator/health"]
interval: 10s
timeout: 5s
retries: 5
# 应用服务
order-service:
build: ./docker/order
container_name: hmily-order
restart: always
depends_on:
mysql:
condition: service_healthy
redis:
condition: service_healthy
eureka:
condition: service_healthy
etcd:
condition: service_healthy
environment:
SPRING_PROFILES_ACTIVE: ${SPRING_PROFILES_ACTIVE}
HMILY_REGISTRY_TYPE: ${HMILY_REGISTRY_TYPE}
HMILY_CONFIG_TYPE: ${HMILY_CONFIG_TYPE}
ports:
- "8080:8080"
volumes:
- ./config:/app/config
networks:
- hmily-network
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8080/actuator/health"]
interval: 10s
timeout: 5s
retries: 5
account-service:
build: ./docker/account
container_name: hmily-account
restart: always
depends_on:
mysql:
condition: service_healthy
zookeeper:
condition: service_healthy
etcd:
condition: service_healthy
environment:
SPRING_PROFILES_ACTIVE: ${SPRING_PROFILES_ACTIVE}
HMILY_REGISTRY_TYPE: ${HMILY_REGISTRY_TYPE}
HMILY_CONFIG_TYPE: ${HMILY_CONFIG_TYPE}
ports:
- "8081:8080"
volumes:
- ./config:/app/config
networks:
- hmily-network
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8080/actuator/health"]
interval: 10s
timeout: 5s
retries: 5
inventory-service:
build: ./docker/inventory
container_name: hmily-inventory
restart: always
depends_on:
mysql:
condition: service_healthy
zookeeper:
condition: service_healthy
etcd:
condition: service_healthy
environment:
SPRING_PROFILES_ACTIVE: ${SPRING_PROFILES_ACTIVE}
HMILY_REGISTRY_TYPE: ${HMILY_REGISTRY_TYPE}
HMILY_CONFIG_TYPE: ${HMILY_CONFIG_TYPE}
ports:
- "8082:8080"
volumes:
- ./config:/app/config
networks:
- hmily-network
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8080/actuator/health"]
interval: 10s
timeout: 5s
retries: 5
# 监控服务
prometheus:
image: prom/prometheus:v2.35.0
container_name: hmily-prometheus
restart: always
ports:
- "9090:9090"
volumes:
- ./prometheus/prometheus.yml:/etc/prometheus/prometheus.yml
- prometheus-data:/prometheus
networks:
- hmily-network
grafana:
image: grafana/grafana:8.4.6
container_name: hmily-grafana
restart: always
depends_on:
- prometheus
ports:
- "3000:3000"
volumes:
- grafana-data:/var/lib/grafana
networks:
- hmily-network
networks:
hmily-network:
driver: bridge
ipam:
driver: default
config:
- subnet: 172.28.0.0/16
volumes:
mysql-data:
redis-data:
zookeeper-data:
zookeeper-datalog:
etcd-data:
prometheus-data:
grafana-data:
.env环境变量配置
# MySQL配置
MYSQL_ROOT_PASSWORD=hmily@2023
HMILY_DB_NAME=hmily_transaction
HMILY_DB_USER=hmily_user
HMILY_DB_PASSWORD=hmily_pass123
# Redis配置
REDIS_PASSWORD=redis@hmily
# Hmily核心配置
HMILY_REGISTRY_TYPE=zookeeper
HMILY_CONFIG_TYPE=etcd
SPRING_PROFILES_ACTIVE=prod
# 服务端口配置
ORDER_SERVICE_PORT=8080
ACCOUNT_SERVICE_PORT=8081
INVENTORY_SERVICE_PORT=8082
Hmily核心配置 (config/hmily.yml)
hmily:
service:
appName: hmily-transaction
port: 8888
# 事务存储配置
repository:
database:
driverClassName: com.mysql.cj.jdbc.Driver
url: jdbc:mysql://hmily-mysql:3306/hmily?useUnicode=true&characterEncoding=utf8&useSSL=false&serverTimezone=GMT%2B8
username: ${HMILY_DB_USER}
password: ${HMILY_DB_PASSWORD}
pool:
maxActive: 20
minIdle: 10
connectionTimeout: 30000
idleTimeout: 600000
# 序列化配置
serializer:
type: kryo
# 协调配置
coordinator:
recoverDelayTime: 60
retryMax: ${RETRY_MAX:3}
scheduledDelay: ${SCHEDULED_DELAY:120}
scheduledThreadMax: ${SCHEDULED_THREAD_MAX:10}
# 日志配置
log:
enabled: true
level: INFO
# 监控配置
metrics:
enabled: true
type: prometheus
应用服务Dockerfile
以订单服务为例,创建自定义Dockerfile:
FROM openjdk:8-jre-slim
WORKDIR /app
# 添加应用JAR包
COPY target/hmily-order-service.jar app.jar
# 添加配置文件
COPY config /app/config
# 设置时区
ENV TZ=Asia/Shanghai
RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone
# JVM参数优化
ENV JAVA_OPTS="-Xms512m -Xmx1024m -XX:+UseG1GC -XX:MaxGCPauseMillis=200"
EXPOSE 8080
ENTRYPOINT ["sh", "-c", "java $JAVA_OPTS -jar app.jar --spring.config.location=file:/app/config/"]
数据库初始化脚本
创建sql/init.sql文件,包含Hmily运行所需的表结构和测试数据:
-- 创建事务日志表
CREATE TABLE IF NOT EXISTS hmily_transaction (
id BIGINT NOT NULL AUTO_INCREMENT COMMENT '主键ID',
trans_id VARCHAR(64) NOT NULL COMMENT '事务ID',
status TINYINT NOT NULL COMMENT '事务状态: 0-尝试中,1-确认中,2-已确认,3-取消中,4-已取消',
app_name VARCHAR(128) NOT NULL COMMENT '应用名称',
service_name VARCHAR(128) NOT NULL COMMENT '服务名称',
method_name VARCHAR(128) NOT NULL COMMENT '方法名称',
create_time DATETIME NOT NULL COMMENT '创建时间',
update_time DATETIME NOT NULL COMMENT '更新时间',
PRIMARY KEY (id),
UNIQUE KEY uk_trans_id (trans_id),
KEY idx_create_time (create_time)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='Hmily事务主表';
-- 创建分支事务表
CREATE TABLE IF NOT EXISTS hmily_participant (
id BIGINT NOT NULL AUTO_INCREMENT COMMENT '主键ID',
trans_id VARCHAR(64) NOT NULL COMMENT '事务ID',
branch_id VARCHAR(64) NOT NULL COMMENT '分支事务ID',
type TINYINT NOT NULL COMMENT '事务类型: 1-TCC,2-TAC,3-XA',
status TINYINT NOT NULL COMMENT '状态: 0-尝试中,1-确认中,2-已确认,3-取消中,4-已取消',
confirm_method VARCHAR(255) NOT NULL COMMENT '确认方法',
cancel_method VARCHAR(255) NOT NULL COMMENT '取消方法',
create_time DATETIME NOT NULL COMMENT '创建时间',
update_time DATETIME NOT NULL COMMENT '更新时间',
PRIMARY KEY (id),
UNIQUE KEY uk_branch_id (branch_id),
KEY idx_trans_id (trans_id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='Hmily分支事务表';
-- 创建业务测试表
CREATE TABLE IF NOT EXISTS account (
id BIGINT NOT NULL AUTO_INCREMENT,
user_id VARCHAR(64) NOT NULL COMMENT '用户ID',
balance DECIMAL(18,2) NOT NULL DEFAULT 0.00 COMMENT '账户余额',
freeze_amount DECIMAL(18,2) NOT NULL DEFAULT 0.00 COMMENT '冻结金额',
create_time DATETIME NOT NULL,
update_time DATETIME NOT NULL,
PRIMARY KEY (id),
UNIQUE KEY uk_user_id (user_id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='账户表';
CREATE TABLE IF NOT EXISTS inventory (
id BIGINT NOT NULL AUTO_INCREMENT,
product_id VARCHAR(64) NOT NULL COMMENT '商品ID',
total_inventory INT NOT NULL DEFAULT 0 COMMENT '总库存',
lock_inventory INT NOT NULL DEFAULT 0 COMMENT '锁定库存',
create_time DATETIME NOT NULL,
update_time DATETIME NOT NULL,
PRIMARY KEY (id),
UNIQUE KEY uk_product_id (product_id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='库存表';
CREATE TABLE IF NOT EXISTS `order` (
id BIGINT NOT NULL AUTO_INCREMENT,
order_no VARCHAR(64) NOT NULL COMMENT '订单号',
user_id VARCHAR(64) NOT NULL COMMENT '用户ID',
product_id VARCHAR(64) NOT NULL COMMENT '商品ID',
amount DECIMAL(18,2) NOT NULL COMMENT '订单金额',
count INT NOT NULL COMMENT '购买数量',
status TINYINT NOT NULL COMMENT '订单状态: 0-创建,1-支付中,2-成功,3-失败,4-取消',
create_time DATETIME NOT NULL,
update_time DATETIME NOT NULL,
PRIMARY KEY (id),
UNIQUE KEY uk_order_no (order_no)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='订单表';
-- 插入测试数据
INSERT INTO account (user_id, balance, freeze_amount, create_time, update_time)
VALUES ('user_001', 10000.00, 0.00, NOW(), NOW());
INSERT INTO inventory (product_id, total_inventory, lock_inventory, create_time, update_time)
VALUES ('product_001', 500, 0, NOW(), NOW());
服务构建与启动流程
1. 构建自定义镜像
为每个微服务编写构建脚本build-services.sh:
#!/bin/bash
set -e
# 克隆代码仓库
if [ ! -d "hmily-src" ]; then
git clone https://gitcode.com/gh_mirrors/hm/hmily.git hmily-src
fi
cd hmily-src
# 编译项目
mvn clean package -DskipTests -P docker
# 复制jar包到Docker构建目录
cp hmily-demo/hmily-demo-tcc/hmily-demo-tcc-dubbo/hmily-demo-tcc-dubbo-order/target/*.jar ../docker/order/
cp hmily-demo/hmily-demo-tcc/hmily-demo-tcc-dubbo/hmily-demo-tcc-dubbo-account/target/*.jar ../docker/account/
cp hmily-demo/hmily-demo-tcc/hmily-demo-tcc-dubbo/hmily-demo-tcc-dubbo-inventory/target/*.jar ../docker/inventory/
cd ..
# 构建Docker镜像
docker-compose build
2. 启动服务集群
# 启动所有服务
docker-compose up -d
# 查看服务状态
docker-compose ps
# 查看日志
docker-compose logs -f --tail=100
3. 验证服务可用性
创建服务验证脚本verify-services.sh:
#!/bin/bash
set -e
# 检查订单服务
ORDER_STATUS=$(curl -s -o /dev/null -w "%{http_code}" http://localhost:8080/actuator/health)
if [ "$ORDER_STATUS" -ne 200 ]; then
echo "订单服务启动失败,HTTP状态码: $ORDER_STATUS"
exit 1
fi
# 检查账户服务
ACCOUNT_STATUS=$(curl -s -o /dev/null -w "%{http_code}" http://localhost:8081/actuator/health)
if [ "$ACCOUNT_STATUS" -ne 200 ]; then
echo "账户服务启动失败,HTTP状态码: $ACCOUNT_STATUS"
exit 1
fi
# 检查库存服务
INVENTORY_STATUS=$(curl -s -o /dev/null -w "%{http_code}" http://localhost:8082/actuator/health)
if [ "$INVENTORY_STATUS" -ne 200 ]; then
echo "库存服务启动失败,HTTP状态码: $INVENTORY_STATUS"
exit 1
fi
# 测试分布式事务
TEST_RESULT=$(curl -s "http://localhost:8080/orderPay?count=1&amount=100")
echo "分布式事务测试结果: $TEST_RESULT"
if echo "$TEST_RESULT" | grep -q "success"; then
echo "Hmily容器化环境部署成功!"
else
echo "分布式事务测试失败,请检查服务日志"
exit 1
fi
执行脚本验证服务是否正常工作:chmod +x verify-services.sh && ./verify-services.sh
多模式部署方案
TCC模式配置
TCC模式需要在业务代码中实现Try/Confirm/Cancel三个方法,在Docker环境中只需修改配置文件启用TCC模式:
# config/order.yml
hmily:
tcc:
enabled: true
retryMax: 3
retryDelay: 1000
TAC模式配置
TAC模式通过解析SQL自动生成回滚语句,配置如下:
# config/account.yml
hmily:
tac:
enabled: true
sqlParse:
type: shardingsphere
dbType: mysql
XA模式配置
XA模式依赖数据库对XA协议的支持,配置如下:
# config/inventory.yml
hmily:
xa:
enabled: true
transactionManager: jotm
recoverDelay: 10000
监控与运维
Prometheus监控配置
创建prometheus/prometheus.yml:
global:
scrape_interval: 15s
evaluation_interval: 15s
scrape_configs:
- job_name: 'hmily-services'
metrics_path: '/actuator/prometheus'
static_configs:
- targets: ['hmily-order:8080', 'hmily-account:8080', 'hmily-inventory:8080']
Grafana仪表盘导入
- 访问Grafana控制台:http://localhost:3000 (默认账号: admin/admin)
- 导入Hmily专用仪表盘JSON(可从项目仓库获取)
- 设置Prometheus数据源,地址为:http://hmily-prometheus:9090
性能测试脚本
创建TCC模式性能测试脚本performance-test.sh:
#!/bin/bash
# 测试1000笔分布式事务的响应时间与成功率
RESULT_FILE="performance-result-$(date +%Y%m%d%H%M%S).txt"
SUCCESS_COUNT=0
FAIL_COUNT=0
TOTAL_TIME=0
echo "开始性能测试,共1000笔交易..." > $RESULT_FILE
echo "测试时间: $(date)" >> $RESULT_FILE
for i in {1..1000}; do
START_TIME=$(date +%s%3N)
RESPONSE=$(curl -s "http://localhost:8080/orderPay?count=1&amount=100")
END_TIME=$(date +%s%3N)
DURATION=$((END_TIME - START_TIME))
TOTAL_TIME=$((TOTAL_TIME + DURATION))
if echo "$RESPONSE" | grep -q "success"; then
SUCCESS_COUNT=$((SUCCESS_COUNT + 1))
echo "第$i笔交易成功,耗时: ${DURATION}ms"
else
FAIL_COUNT=$((FAIL_COUNT + 1))
echo "第$i笔交易失败,响应: $RESPONSE" >> $RESULT_FILE
fi
# 每100笔交易休息1秒,避免系统过载
if ((i % 100 == 0)); then
sleep 1
fi
done
AVG_TIME=$((TOTAL_TIME / 1000))
SUCCESS_RATE=$(echo "scale=2; $SUCCESS_COUNT / 10" | bc)
echo "测试完成: $(date)" >> $RESULT_FILE
echo "总交易数: 1000" >> $RESULT_FILE
echo "成功数: $SUCCESS_COUNT" >> $RESULT_FILE
echo "失败数: $FAIL_COUNT" >> $RESULT_FILE
echo "成功率: ${SUCCESS_RATE}%" >> $RESULT_FILE
echo "总耗时: ${TOTAL_TIME}ms" >> $RESULT_FILE
echo "平均响应时间: ${AVG_TIME}ms" >> $RESULT_FILE
echo "性能测试完成,结果已保存至$RESULT_FILE"
生产环境部署注意事项
容器资源限制
在生产环境中,建议为每个容器添加资源限制,避免资源争抢:
# 在docker-compose.yml的每个service下添加
deploy:
resources:
limits:
cpus: '2'
memory: 4G
reservations:
cpus: '1'
memory: 2G
数据备份策略
创建数据库备份脚本backup-db.sh:
#!/bin/bash
# 每日凌晨3点备份Hmily事务数据库
BACKUP_DIR="/backup/hmily-db"
TIMESTAMP=$(date +%Y%m%d%H%M%S)
FILENAME="hmily-backup-${TIMESTAMP}.sql.gz"
# 创建备份目录
mkdir -p $BACKUP_DIR
# 执行备份
docker exec hmily-mysql mysqldump -u$HMILY_DB_USER -p$HMILY_DB_PASSWORD --databases $HMILY_DB_NAME | gzip > $BACKUP_DIR/$FILENAME
# 保留最近30天的备份
find $BACKUP_DIR -name "hmily-backup-*.sql.gz" -type f -mtime +30 -delete
echo "数据库备份完成: $BACKUP_DIR/$FILENAME"
高可用部署方案
对于生产环境,建议采用以下高可用策略:
- 多节点部署:每个服务至少部署2个实例,避免单点故障
- 数据库主从:配置MySQL主从复制,实现读写分离
- 注册中心集群:ZooKeeper/Eureka部署3节点集群
- 配置中心高可用:etcd集群部署3节点
- 负载均衡:在服务前端添加Nginx负载均衡
- 容器编排:生产环境建议使用Kubernetes替代Docker Compose
常见问题解决方案
问题1:事务回滚失败
症状:部分分布式事务在异常情况下无法自动回滚
解决方案:
- 检查数据库连接池配置,确保有足够连接:
hmily:
repository:
database:
pool:
maxActive: 50
minIdle: 20
- 调整事务恢复调度参数:
hmily:
coordinator:
recoverDelayTime: 30
scheduledDelay: 60
问题2:性能瓶颈
症状:高并发场景下事务响应时间过长
解决方案:
- 启用异步日志存储:
hmily:
repository:
async: true
- 调整JVM参数,增加堆内存:
JAVA_OPTS="-Xms2g -Xmx4g -XX:+UseG1GC -XX:MaxGCPauseMillis=100"
问题3:服务间通信超时
症状:RPC调用经常超时,导致事务重试
解决方案:
- 增加RPC超时配置:
dubbo:
consumer:
timeout: 3000
- 检查网络配置,确保容器间网络通畅:
docker network inspect hmily-network
总结与展望
本文详细介绍了Hmily分布式事务框架的Docker Compose一键部署方案,通过容器化技术解决了传统部署方式中的环境依赖复杂、配置繁琐和一致性难以保证等问题。该方案支持TCC/TAC/XA三种事务模式,提供了完整的监控、测试和运维工具链,可直接用于开发、测试和生产环境。
未来优化方向:
- 集成Service Mesh,实现更细粒度的流量控制
- 引入混沌工程测试,提升系统容错能力
- 开发自动化运维平台,简化多环境管理
- 优化事务存储引擎,提升高并发场景下的性能
通过本文提供的方案,你可以快速搭建稳定、高效的分布式事务环境,专注于业务逻辑开发而非基础设施配置。如有任何问题或优化建议,欢迎提交Issue或Pull Request参与项目贡献。
收藏本文,关注项目仓库获取最新部署方案,下期将带来《Hmily与Seata性能对比测试》,敬请期待!
【免费下载链接】hmily Distributed transaction solutions 项目地址: https://gitcode.com/gh_mirrors/hm/hmily
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考



