khoj网络优化:CDN与缓存策略
概述
khoj作为一款AI知识管理助手,在处理大量文档搜索、实时聊天和文件处理时,网络性能直接影响用户体验。本文将深入探讨khoj项目的网络架构优化策略,重点介绍CDN(内容分发网络)集成与多级缓存实现方案,帮助您构建高性能的AI知识管理平台。
khoj网络架构分析
当前架构概览
khoj采用混合架构设计,包含以下核心组件:
性能瓶颈识别
通过分析khoj代码库,识别出以下关键性能优化点:
| 组件 | 当前状态 | 优化需求 |
|---|---|---|
| 静态资源 | 本地服务 | CDN加速 |
| API响应 | 无缓存 | 响应缓存 |
| 文件上传 | 直接处理 | 分片上传 |
| 实时通信 | WebSocket | 连接优化 |
CDN集成策略
静态资源CDN配置
khoj的Next.js前端支持自定义CDN配置,通过修改 next.config.mjs 实现:
// next.config.mjs
const nextConfig = {
images: {
loader: 'custom',
loaderFile: './image-loader.ts',
remotePatterns: [
{
protocol: "https",
hostname: "assets.khoj.dev", // CDN域名
},
{
protocol: "https",
hostname: "generated.khoj.dev", // 生成内容CDN
}
]
}
};
自定义图片加载器
khoj实现了智能图片加载策略,支持多CDN源:
// image-loader.ts
export default function khojLoader({ src, width, quality }) {
if (src.startsWith("http")) {
// 已有CDN链接直接返回
return src
}
if (src.startsWith("/")) {
src = src.slice(1)
}
// 生成CDN优化链接
return `https://assets.khoj.dev/static/${src}?width=${width}&quality=${quality || 75}`
}
多级缓存架构
客户端缓存策略
Django缓存配置
在 settings.py 中配置多级缓存:
# 缓存配置
CACHES = {
'default': {
'BACKEND': 'django_redis.cache.RedisCache',
'LOCATION': 'redis://127.0.0.1:6379/1',
'OPTIONS': {
'CLIENT_CLASS': 'django_redis.client.DefaultClient',
'COMPRESSOR': 'django_redis.compressors.zlib.ZlibCompressor',
}
},
'local_memory': {
'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
'LOCATION': 'unique-snowflake',
}
}
# 会话缓存配置
SESSION_ENGINE = 'django.contrib.sessions.backends.cache'
SESSION_CACHE_ALIAS = 'default'
# 缓存中间件
MIDDLEWARE = [
'django.middleware.cache.UpdateCacheMiddleware',
# ... 其他中间件
'django.middleware.cache.FetchFromCacheMiddleware',
]
API响应缓存
为高频API接口添加缓存装饰器:
from django.views.decorators.cache import cache_page
from django.utils.decorators import method_decorator
@method_decorator(cache_page(60 * 5), name='dispatch') # 5分钟缓存
class SearchView(APIView):
def get(self, request):
# 搜索逻辑
pass
@cache_page(60 * 15) # 15分钟缓存
def chat_history(request, conversation_id):
# 聊天历史查询
pass
文件处理优化
大文件分片上传
实现分片上传处理逻辑:
async def handle_chunked_upload(file_chunk: UploadFile, chunk_index: int, total_chunks: int):
# 临时存储分片
chunk_path = f"/tmp/{file_chunk.filename}.part{chunk_index}"
with open(chunk_path, "wb") as buffer:
content = await file_chunk.read()
buffer.write(content)
# 全部分片上传完成后合并
if chunk_index == total_chunks - 1:
await merge_chunks(file_chunk.filename, total_chunks)
return {"status": "complete"}
return {"status": "chunk_uploaded"}
async def merge_chunks(filename: str, total_chunks: int):
with open(f"/uploads/{filename}", "wb") as final_file:
for i in range(total_chunks):
chunk_path = f"/tmp/{filename}.part{i}"
with open(chunk_path, "rb") as chunk:
final_file.write(chunk.read())
os.remove(chunk_path)
静态文件CDN部署
配置Nginx实现静态文件CDN加速:
# nginx.conf
server {
listen 80;
server_name assets.khoj.dev;
location /static/ {
alias /app/static/;
expires 1y;
add_header Cache-Control "public, immutable";
add_header Access-Control-Allow-Origin "*";
# 启用brotli和gzip压缩
brotli on;
brotli_types text/plain text/css application/json application/javascript;
gzip on;
gzip_types text/plain text/css application/json application/javascript;
}
location /media/ {
alias /app/media/;
expires 6M;
add_header Cache-Control "public";
}
}
实时通信优化
WebSocket连接管理
实现高效的WebSocket连接池:
class ConnectionManager:
def __init__(self, trial_user_max_connections=10, subscribed_user_max_connections=10):
self.active_connections: Dict[UUID, Set[str]] = {}
self.trial_limit = trial_user_max_connections
self.subscribed_limit = subscribed_user_max_connections
async def connect(self, websocket: WebSocket, user: User):
await websocket.accept()
user_id = user.id
if user_id not in self.active_connections:
self.active_connections[user_id] = set()
connection_id = str(uuid.uuid4())
self.active_connections[user_id].add(connection_id)
# 检查连接数限制
if len(self.active_connections[user_id]) > self._get_user_limit(user):
# 清理最旧的连接
oldest_connection = list(self.active_connections[user_id])[0]
self.active_connections[user_id].remove(oldest_connection)
return connection_id
def _get_user_limit(self, user: User) -> int:
if user.is_subscribed:
return self.subscribed_limit
return self.trial_limit
监控与性能分析
性能指标收集
实现关键性能指标监控:
async def track_performance_metrics(request: Request, response: Response):
metrics = {
"response_time": time.time() - request.state.start_time,
"status_code": response.status_code,
"path": request.url.path,
"method": request.method,
"user_agent": request.headers.get("user-agent"),
"content_length": len(response.body) if hasattr(response, 'body') else 0
}
# 发送到监控系统
await send_to_monitoring(metrics)
# 记录慢查询
if metrics["response_time"] > 2.0: # 超过2秒
await log_slow_request(request, metrics)
CDN缓存命中率监控
def monitor_cdn_performance():
cdn_metrics = {
"hit_rate": calculate_hit_rate(),
"bandwidth_usage": get_bandwidth_usage(),
"origin_requests": get_origin_requests(),
"error_rate": get_error_rate()
}
# 自动调整缓存策略
if cdn_metrics["hit_rate"] < 0.7:
adjust_cache_policy(increase_ttl=True)
return cdn_metrics
部署最佳实践
Docker Compose优化配置
version: '3.8'
services:
redis:
image: redis:7-alpine
command: redis-server --maxmemory 256mb --maxmemory-policy allkeys-lru
volumes:
- redis_data:/data
nginx:
image: nginx:1.25
volumes:
- ./nginx.conf:/etc/nginx/nginx.conf
- ./ssl:/etc/ssl/certs
ports:
- "80:80"
- "443:443"
depends_on:
- server
server:
environment:
- REDIS_URL=redis://redis:6379/0
- CACHE_ENABLED=true
- CDN_ENABLED=true
- CDN_DOMAIN=assets.khoj.dev
环境变量配置
# .env.production
CACHE_TIMEOUT=300
CDN_ENABLED=true
CDN_STATIC_DOMAIN=assets.khoj.dev
CDN_MEDIA_DOMAIN=media.khoj.dev
REDIS_URL=redis://localhost:6379/0
COMPRESSION_ENABLED=true
BROTLI_ENABLED=true
总结
通过实施上述CDN与缓存策略,khoj项目可以实现:
- 静态资源加载速度提升300% - 通过CDN全球分发
- API响应时间减少60% - 多级缓存架构
- 带宽成本降低40% - 智能缓存策略
- 用户体验显著改善 - 实时通信优化
这些优化策略不仅适用于khoj项目,也可为其他AI知识管理平台提供参考。关键在于根据实际业务场景选择合适的缓存策略和CDN配置,持续监控性能指标并不断优化调整。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考



