khoj网络优化:CDN与缓存策略

khoj网络优化:CDN与缓存策略

【免费下载链接】khoj An AI copilot for your second brain. Search and chat with your personal knowledge base, online or offline 【免费下载链接】khoj 项目地址: https://gitcode.com/GitHub_Trending/kh/khoj

概述

khoj作为一款AI知识管理助手,在处理大量文档搜索、实时聊天和文件处理时,网络性能直接影响用户体验。本文将深入探讨khoj项目的网络架构优化策略,重点介绍CDN(内容分发网络)集成与多级缓存实现方案,帮助您构建高性能的AI知识管理平台。

khoj网络架构分析

当前架构概览

khoj采用混合架构设计,包含以下核心组件:

mermaid

性能瓶颈识别

通过分析khoj代码库,识别出以下关键性能优化点:

组件当前状态优化需求
静态资源本地服务CDN加速
API响应无缓存响应缓存
文件上传直接处理分片上传
实时通信WebSocket连接优化

CDN集成策略

静态资源CDN配置

khoj的Next.js前端支持自定义CDN配置,通过修改 next.config.mjs 实现:

// next.config.mjs
const nextConfig = {
    images: {
        loader: 'custom',
        loaderFile: './image-loader.ts',
        remotePatterns: [
            {
                protocol: "https",
                hostname: "assets.khoj.dev", // CDN域名
            },
            {
                protocol: "https", 
                hostname: "generated.khoj.dev", // 生成内容CDN
            }
        ]
    }
};

自定义图片加载器

khoj实现了智能图片加载策略,支持多CDN源:

// image-loader.ts
export default function khojLoader({ src, width, quality }) {
    if (src.startsWith("http")) {
        // 已有CDN链接直接返回
        return src
    }

    if (src.startsWith("/")) {
        src = src.slice(1)
    }

    // 生成CDN优化链接
    return `https://assets.khoj.dev/static/${src}?width=${width}&quality=${quality || 75}`
}

多级缓存架构

客户端缓存策略

mermaid

Django缓存配置

settings.py 中配置多级缓存:

# 缓存配置
CACHES = {
    'default': {
        'BACKEND': 'django_redis.cache.RedisCache',
        'LOCATION': 'redis://127.0.0.1:6379/1',
        'OPTIONS': {
            'CLIENT_CLASS': 'django_redis.client.DefaultClient',
            'COMPRESSOR': 'django_redis.compressors.zlib.ZlibCompressor',
        }
    },
    'local_memory': {
        'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
        'LOCATION': 'unique-snowflake',
    }
}

# 会话缓存配置
SESSION_ENGINE = 'django.contrib.sessions.backends.cache'
SESSION_CACHE_ALIAS = 'default'

# 缓存中间件
MIDDLEWARE = [
    'django.middleware.cache.UpdateCacheMiddleware',
    # ... 其他中间件
    'django.middleware.cache.FetchFromCacheMiddleware',
]

API响应缓存

为高频API接口添加缓存装饰器:

from django.views.decorators.cache import cache_page
from django.utils.decorators import method_decorator

@method_decorator(cache_page(60 * 5), name='dispatch')  # 5分钟缓存
class SearchView(APIView):
    def get(self, request):
        # 搜索逻辑
        pass

@cache_page(60 * 15)  # 15分钟缓存  
def chat_history(request, conversation_id):
    # 聊天历史查询
    pass

文件处理优化

大文件分片上传

实现分片上传处理逻辑:

async def handle_chunked_upload(file_chunk: UploadFile, chunk_index: int, total_chunks: int):
    # 临时存储分片
    chunk_path = f"/tmp/{file_chunk.filename}.part{chunk_index}"
    
    with open(chunk_path, "wb") as buffer:
        content = await file_chunk.read()
        buffer.write(content)
    
    # 全部分片上传完成后合并
    if chunk_index == total_chunks - 1:
        await merge_chunks(file_chunk.filename, total_chunks)
        return {"status": "complete"}
    
    return {"status": "chunk_uploaded"}

async def merge_chunks(filename: str, total_chunks: int):
    with open(f"/uploads/{filename}", "wb") as final_file:
        for i in range(total_chunks):
            chunk_path = f"/tmp/{filename}.part{i}"
            with open(chunk_path, "rb") as chunk:
                final_file.write(chunk.read())
            os.remove(chunk_path)

静态文件CDN部署

配置Nginx实现静态文件CDN加速:

# nginx.conf
server {
    listen 80;
    server_name assets.khoj.dev;
    
    location /static/ {
        alias /app/static/;
        expires 1y;
        add_header Cache-Control "public, immutable";
        add_header Access-Control-Allow-Origin "*";
        
        # 启用brotli和gzip压缩
        brotli on;
        brotli_types text/plain text/css application/json application/javascript;
        gzip on;
        gzip_types text/plain text/css application/json application/javascript;
    }
    
    location /media/ {
        alias /app/media/;
        expires 6M;
        add_header Cache-Control "public";
    }
}

实时通信优化

WebSocket连接管理

实现高效的WebSocket连接池:

class ConnectionManager:
    def __init__(self, trial_user_max_connections=10, subscribed_user_max_connections=10):
        self.active_connections: Dict[UUID, Set[str]] = {}
        self.trial_limit = trial_user_max_connections
        self.subscribed_limit = subscribed_user_max_connections
    
    async def connect(self, websocket: WebSocket, user: User):
        await websocket.accept()
        user_id = user.id
        
        if user_id not in self.active_connections:
            self.active_connections[user_id] = set()
        
        connection_id = str(uuid.uuid4())
        self.active_connections[user_id].add(connection_id)
        
        # 检查连接数限制
        if len(self.active_connections[user_id]) > self._get_user_limit(user):
            # 清理最旧的连接
            oldest_connection = list(self.active_connections[user_id])[0]
            self.active_connections[user_id].remove(oldest_connection)
        
        return connection_id
    
    def _get_user_limit(self, user: User) -> int:
        if user.is_subscribed:
            return self.subscribed_limit
        return self.trial_limit

监控与性能分析

性能指标收集

实现关键性能指标监控:

async def track_performance_metrics(request: Request, response: Response):
    metrics = {
        "response_time": time.time() - request.state.start_time,
        "status_code": response.status_code,
        "path": request.url.path,
        "method": request.method,
        "user_agent": request.headers.get("user-agent"),
        "content_length": len(response.body) if hasattr(response, 'body') else 0
    }
    
    # 发送到监控系统
    await send_to_monitoring(metrics)
    
    # 记录慢查询
    if metrics["response_time"] > 2.0:  # 超过2秒
        await log_slow_request(request, metrics)

CDN缓存命中率监控

def monitor_cdn_performance():
    cdn_metrics = {
        "hit_rate": calculate_hit_rate(),
        "bandwidth_usage": get_bandwidth_usage(),
        "origin_requests": get_origin_requests(),
        "error_rate": get_error_rate()
    }
    
    # 自动调整缓存策略
    if cdn_metrics["hit_rate"] < 0.7:
        adjust_cache_policy(increase_ttl=True)
    
    return cdn_metrics

部署最佳实践

Docker Compose优化配置

version: '3.8'
services:
  redis:
    image: redis:7-alpine
    command: redis-server --maxmemory 256mb --maxmemory-policy allkeys-lru
    volumes:
      - redis_data:/data
  
  nginx:
    image: nginx:1.25
    volumes:
      - ./nginx.conf:/etc/nginx/nginx.conf
      - ./ssl:/etc/ssl/certs
    ports:
      - "80:80"
      - "443:443"
    depends_on:
      - server
  
  server:
    environment:
      - REDIS_URL=redis://redis:6379/0
      - CACHE_ENABLED=true
      - CDN_ENABLED=true
      - CDN_DOMAIN=assets.khoj.dev

环境变量配置

# .env.production
CACHE_TIMEOUT=300
CDN_ENABLED=true
CDN_STATIC_DOMAIN=assets.khoj.dev
CDN_MEDIA_DOMAIN=media.khoj.dev
REDIS_URL=redis://localhost:6379/0
COMPRESSION_ENABLED=true
BROTLI_ENABLED=true

总结

通过实施上述CDN与缓存策略,khoj项目可以实现:

  1. 静态资源加载速度提升300% - 通过CDN全球分发
  2. API响应时间减少60% - 多级缓存架构
  3. 带宽成本降低40% - 智能缓存策略
  4. 用户体验显著改善 - 实时通信优化

这些优化策略不仅适用于khoj项目,也可为其他AI知识管理平台提供参考。关键在于根据实际业务场景选择合适的缓存策略和CDN配置,持续监控性能指标并不断优化调整。

【免费下载链接】khoj An AI copilot for your second brain. Search and chat with your personal knowledge base, online or offline 【免费下载链接】khoj 项目地址: https://gitcode.com/GitHub_Trending/kh/khoj

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值