Apache Airflow 使用指南
1. 项目介绍
Apache Airflow 是一个开源的工作流管理平台,用于编排和调度复杂的数据管道。它允许用户通过 Python 脚本定义工作流,并使用有向无环图(DAG)来表示任务之间的依赖关系。Airflow 提供了强大的调度、监控和日志记录功能,适用于各种数据处理和ETL(提取、转换、加载)任务。
2. 项目快速启动
安装 Airflow
首先,确保你已经安装了 Python 和 pip。然后,使用以下命令安装 Airflow:
pip install apache-airflow
初始化数据库
安装完成后,初始化 Airflow 的数据库:
airflow db init
启动 Web 服务器
启动 Airflow 的 Web 服务器:
airflow webserver --port 8080
启动调度器
在另一个终端窗口中,启动 Airflow 的调度器:
airflow scheduler
创建你的第一个 DAG
在 dags
目录下创建一个新的 Python 文件,例如 example_dag.py
,并添加以下内容:
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta
default_args = {
'owner': 'airflow',
'depends_on_past': False,
'start_date': datetime(2023, 1, 1),
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5),
}
dag = DAG(
'example_dag',
default_args=default_args,
description='A simple tutorial DAG',
schedule_interval=timedelta(days=1),
)
t1 = BashOperator(
task_id='print_date',
bash_command='date',
dag=dag,
)
t2 = BashOperator(
task_id='sleep',
bash_command='sleep 5',
retries=3,
dag=dag,
)
t1 >> t2
查看 DAG
打开浏览器,访问 http://localhost:8080
,你将看到 Airflow 的 Web 界面。在 DAGs 列表中,你应该能看到 example_dag
。
3. 应用案例和最佳实践
应用案例
- ETL 管道:Airflow 常用于构建和调度 ETL 管道,从多个数据源提取数据,进行转换,并加载到数据仓库中。
- 数据科学工作流:数据科学家可以使用 Airflow 来编排和调度数据预处理、模型训练和评估等任务。
- 监控和报警:Airflow 可以与监控系统集成,自动触发报警或重新调度任务。
最佳实践
- 模块化 DAG:将复杂的 DAG 分解为多个小任务,提高可维护性和可读性。
- 使用模板:利用 Airflow 的模板功能,动态生成任务参数。
- 日志管理:配置日志记录,确保任务执行过程中的关键信息被记录和监控。
4. 典型生态项目
- Apache Kafka:用于实时数据流处理,与 Airflow 结合可以实现实时数据管道的编排。
- Apache Spark:用于大规模数据处理,Airflow 可以调度 Spark 任务。
- Apache Hive:用于数据仓库查询,Airflow 可以调度 Hive 查询任务。
- Apache Superset:用于数据可视化,Airflow 可以调度 Superset 的数据更新任务。
通过这些模块的介绍和实践,你可以快速上手 Apache Airflow,并了解其在实际项目中的应用和最佳实践。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考