KrillinAI API扩展指南:打造智能视频翻译与配音工作流

KrillinAI API扩展指南:打造智能视频翻译与配音工作流

【免费下载链接】KrillinAI 基于AI大模型的视频翻译和配音工具,专业级翻译,一键部署全流程 【免费下载链接】KrillinAI 项目地址: https://gitcode.com/GitHub_Trending/kr/KrillinAI

概述

KrillinAI是一个基于AI大模型的视频翻译和配音工具,提供专业级的多语言翻译服务。通过其强大的API接口,开发者可以轻松集成视频翻译、语音识别、字幕生成和配音功能到自己的应用中。本文将深入解析KrillinAI的API架构、核心功能和扩展方式,帮助开发者构建自定义的视频处理工作流。

API架构概览

KrillinAI采用微服务架构设计,主要包含以下核心组件:

mermaid

核心API端点

端点方法功能描述参数
/api/capability/subtitleTaskPOST创建字幕翻译任务JSON请求体
/api/capability/subtitleTaskGET获取任务状态taskId查询参数
/api/filePOST文件上传multipart/form-data
/api/file/*filepathGET文件下载文件路径参数

字幕任务API详解

创建字幕任务

// 请求数据结构
type StartVideoSubtitleTaskReq struct {
    AppId                     uint32   `json:"app_id"`
    Url                       string   `json:"url"`
    OriginLanguage            string   `json:"origin_lang"`
    TargetLang                string   `json:"target_lang"`
    Bilingual                 uint8    `json:"bilingual"`
    TranslationSubtitlePos    uint8    `json:"translation_subtitle_pos"`
    ModalFilter               uint8    `json:"modal_filter"`
    Tts                       uint8    `json:"tts"`
    TtsVoiceCode              string   `json:"tts_voice_code"`
    TtsVoiceCloneSrcFileUrl   string   `json:"tts_voice_clone_src_file_url"`
    Replace                   []string `json:"replace"`
    Language                  string   `json:"language"`
    EmbedSubtitleVideoType    string   `json:"embed_subtitle_video_type"`
    VerticalMajorTitle        string   `json:"vertical_major_title"`
    VerticalMinorTitle        string   `json:"vertical_minor_title"`
    OriginLanguageWordOneLine int      `json:"origin_language_word_one_line"`
}

参数说明表

参数类型必填说明示例值
urlstring视频URL或本地文件路径"https://example.com/video.mp4"
origin_langstring源语言代码"zh", "en", "ja"
target_langstring目标语言代码"en", "zh", "ja"
bilingualuint8是否生成双语字幕1(是), 2(否)
ttsuint8是否启用配音1(是), 2(否)
tts_voice_codestring配音声音代码"zh-CN-XiaoxiaoNeural"
replace[]string词汇替换列表["AI->人工智能","GPU->图形处理器"]
embed_subtitle_video_typestring字幕嵌入类型"none", "horizontal", "vertical", "all"

任务状态查询

// 响应数据结构
type GetVideoSubtitleTaskResData struct {
    TaskId            string          `json:"task_id"`
    ProcessPercent    uint8           `json:"process_percent"`
    VideoInfo         *VideoInfo      `json:"video_info"`
    SubtitleInfo      []*SubtitleInfo `json:"subtitle_info"`
    TargetLanguage    string          `json:"target_language"`
    SpeechDownloadUrl string          `json:"speech_download_url"`
}

配置系统扩展

配置文件结构

KrillinAI使用TOML格式的配置文件,支持多种服务提供商:

[app]
segment_duration = 5
transcribe_parallel_num = 1
translate_parallel_num = 3
proxy = "http://proxy.example.com:8080"

[server]
host = "127.0.0.1"
port = 8888

[llm]
base_url = "https://api.openai.com/v1"
api_key = "your-openai-api-key"
model = "gpt-4o-mini"

[transcribe]
provider = "fasterwhisper"
enable_gpu_acceleration = false

[transcribe.fasterwhisper]
model = "large-v2"

[tts]
provider = "aliyun"

[tts.aliyun.oss]
access_key_id = "your-access-key-id"
access_key_secret = "your-access-key-secret"
bucket = "your-bucket-name"

[tts.aliyun.speech]
access_key_id = "your-access-key-id"
access_key_secret = "your-access-key-secret"
app_key = "your-app-key"

支持的服务提供商

语音识别服务
提供商平台支持模型选项类型
OpenAI Whisper全平台whisper-1云端
FasterWhisperWindows/Linuxtiny/medium/large-v2本地
WhisperKitmacOS (M系列)large-v2本地
WhisperCpp全平台large-v2本地
阿里云ASR全平台-云端
大语言模型服务

支持所有符合OpenAI API规范的云/本地大语言模型服务,包括:

  • OpenAI GPT系列
  • Google Gemini
  • DeepSeek
  • 通义千问
  • 本地部署的开源模型
文本转语音服务
  • OpenAI TTS
  • 阿里云语音服务

API集成示例

Python客户端示例

import requests
import json
import time

class KrillinAIClient:
    def __init__(self, base_url="http://localhost:8888"):
        self.base_url = base_url
    
    def create_subtitle_task(self, video_url, source_lang, target_lang, **kwargs):
        """创建字幕翻译任务"""
        payload = {
            "url": video_url,
            "origin_lang": source_lang,
            "target_lang": target_lang,
            "bilingual": kwargs.get("bilingual", 1),
            "tts": kwargs.get("tts", 2),
            "replace": kwargs.get("replace", []),
            "embed_subtitle_video_type": kwargs.get("embed_type", "none")
        }
        
        response = requests.post(
            f"{self.base_url}/api/capability/subtitleTask",
            json=payload,
            headers={"Content-Type": "application/json"}
        )
        
        if response.status_code == 200:
            return response.json()["data"]["task_id"]
        else:
            raise Exception(f"任务创建失败: {response.text}")
    
    def get_task_status(self, task_id):
        """获取任务状态"""
        response = requests.get(
            f"{self.base_url}/api/capability/subtitleTask",
            params={"taskId": task_id}
        )
        
        if response.status_code == 200:
            return response.json()["data"]
        else:
            raise Exception(f"状态查询失败: {response.text}")
    
    def wait_for_completion(self, task_id, poll_interval=5):
        """等待任务完成"""
        while True:
            status = self.get_task_status(task_id)
            progress = status["process_percent"]
            
            print(f"任务进度: {progress}%")
            
            if progress >= 100:
                return status
            
            time.sleep(poll_interval)

# 使用示例
client = KrillinAIClient()

# 创建翻译任务
task_id = client.create_subtitle_task(
    video_url="https://example.com/video.mp4",
    source_lang="en",
    target_lang="zh",
    bilingual=1,
    tts=1,
    tts_voice_code="zh-CN-XiaoxiaoNeural",
    replace=["AI->人工智能", "ML->机器学习"]
)

# 等待任务完成
result = client.wait_for_completion(task_id)
print("任务完成!")
print(f"字幕文件: {result['subtitle_info']}")
print(f"配音文件: {result['speech_download_url']}")

JavaScript/Node.js客户端示例

const axios = require('axios');

class KrillinAIClient {
    constructor(baseURL = 'http://localhost:8888') {
        this.client = axios.create({ baseURL });
    }

    async createSubtitleTask(videoUrl, sourceLang, targetLang, options = {}) {
        const payload = {
            url: videoUrl,
            origin_lang: sourceLang,
            target_lang: targetLang,
            bilingual: options.bilingual || 1,
            tts: options.tts || 2,
            replace: options.replace || [],
            embed_subtitle_video_type: options.embedType || 'none'
        };

        const response = await this.client.post('/api/capability/subtitleTask', payload);
        return response.data.data.task_id;
    }

    async getTaskStatus(taskId) {
        const response = await this.client.get('/api/capability/subtitleTask', {
            params: { taskId }
        });
        return response.data.data;
    }

    async waitForCompletion(taskId, interval = 5000) {
        return new Promise((resolve) => {
            const checkStatus = async () => {
                const status = await this.getTaskStatus(taskId);
                console.log(`任务进度: ${status.process_percent}%`);

                if (status.process_percent >= 100) {
                    resolve(status);
                } else {
                    setTimeout(checkStatus, interval);
                }
            };
            checkStatus();
        });
    }
}

// 使用示例
async function main() {
    const client = new KrillinAIClient();
    
    try {
        const taskId = await client.createSubtitleTask(
            'https://example.com/video.mp4',
            'en',
            'zh',
            {
                bilingual: 1,
                tts: 1,
                ttsVoiceCode: 'zh-CN-XiaoxiaoNeural',
                replace: ['AI->人工智能', 'ML->机器学习']
            }
        );

        console.log(`任务创建成功,ID: ${taskId}`);
        
        const result = await client.waitForCompletion(taskId);
        console.log('任务完成!', result);
        
    } catch (error) {
        console.error('任务处理失败:', error.message);
    }
}

main();

高级功能扩展

自定义词汇替换系统

KrillinAI支持智能词汇替换,确保专业术语的准确翻译:

// 自定义替换规则示例
replaceRules := []string{
    "GPU->图形处理器",
    "AI->人工智能", 
    "ML->机器学习",
    "API->应用程序接口",
    "CPU->中央处理器",
    "RAM->随机存取存储器",
    "SSD->固态硬盘",
    "IoT->物联网",
    "VR->虚拟现实",
    "AR->增强现实"
}

// 在API请求中传递
payload := map[string]interface{}{
    "url": "https://example.com/tech-video.mp4",
    "origin_lang": "en",
    "target_lang": "zh",
    "replace": replaceRules,
    // ... 其他参数
}

多视频格式支持

KrillinAI通过yt-dlp支持多种视频格式和来源:

视频来源支持格式示例URL格式
YouTubeMP4, WebMhttps://www.youtube.com/watch?v=VIDEO_ID
BilibiliFLV, MP4https://www.bilibili.com/video/BVxxxxxx
本地文件MP4, AVI, MOVlocal:/path/to/video.mp4
其他平台多种格式支持yt-dlp的所有平台

批量处理扩展

def batch_process_videos(video_list, source_lang, target_lang):
    """批量处理多个视频"""
    results = []
    
    for video_info in video_list:
        try:
            task_id = client.create_subtitle_task(
                video_url=video_info['url'],
                source_lang=source_lang,
                target_lang=target_lang,
                bilingual=video_info.get('bilingual', 1),
                tts=video_info.get('tts', 2)
            )
            
            results.append({
                'video': video_info['name'],
                'task_id': task_id,
                'status': 'processing'
            })
            
        except Exception as e:
            results.append({
                'video': video_info['name'],
                'error': str(e),
                'status': 'failed'
            })
    
    return results

错误处理与监控

常见错误代码

错误代码描述解决方案
-1参数错误检查请求参数格式和必填字段
-2配置错误验证服务配置是否正确
-3网络错误检查网络连接和代理设置
-4服务不可用目标服务可能暂时不可用
-5文件处理错误检查文件格式和权限

监控集成示例

from prometheus_client import Counter, Gauge, start_http_server

# 定义监控指标
TASKS_CREATED = Counter('krillinai_tasks_created', 'Total tasks created')
TASKS_COMPLETED = Counter('krillinai_tasks_completed', 'Total tasks completed')
TASKS_FAILED = Counter('krillinai_tasks_failed', 'Total tasks failed')
PROCESSING_TIME = Gauge('krillinai_processing_time_seconds', 'Task processing time')

class MonitoredKrillinAIClient(KrillinAIClient):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        # 启动Prometheus指标服务器
        start_http_server(8000)
    
    def create_subtitle_task(self, *args, **kwargs):
        TASKS_CREATED.inc()
        start_time = time.time()
        
        try:
            result = super().create_subtitle_task(*args, **kwargs)
            PROCESSING_TIME.set(time.time() - start_time)
            TASKS_COMPLETED.inc()
            return result
        except Exception as e:
            TASKS_FAILED.inc()
            raise e

性能优化建议

并发处理配置

[app]
segment_duration = 5
transcribe_parallel_num = 2    # 语音识别并发数
translate_parallel_num = 4     # 翻译并发数
transcribe_max_attempts = 3
translate_max_attempts = 3
max_sentence_length = 70

内存和GPU优化

[transcribe]
provider = "fasterwhisper"
enable_gpu_acceleration = true   # 启用GPU加速

[transcribe.fasterwhisper]
model = "medium"                 # 平衡精度和性能

安全最佳实践

API密钥管理

import os
from dotenv import load_dotenv

load_dotenv()

class SecureKrillinAIClient:
    def __init__(self):
        self.config = {
            'openai_api_key': os.getenv('OPENAI_API_KEY'),
            'aliyun_access_key': os.getenv('ALIYUN_ACCESS_KEY'),
            'aliyun_secret_key': os.getenv('ALIYUN_SECRET_KEY')
        }
    
    def validate_config(self):
        """验证配置完整性"""
        required_keys = ['openai_api_key']
        missing_keys = [key for key in required_keys if not self.config.get(key)]
        
        if missing_keys:
            raise ValueError(f"缺少必要的配置项: {missing_keys}")

请求限流保护

from ratelimit import limits, sleep_and_retry

class RateLimitedClient(KrillinAIClient):
    @sleep_and_retry
    @limits(calls=10, period=60)  # 每分钟最多10次调用
    def create_subtitle_task(self, *args, **kwargs):
        return super().create_subtitle_task(*args, **kwargs)
    
    @sleep_and_retry
    @limits(calls=30, period=60)  # 每分钟最多30次状态查询
    def get_task_status(self, *args, **kwargs):
        return super().get_task_status(*args, **kwargs)

部署与扩展

Docker容器化部署

FROM golang:1.21-alpine

WORKDIR /app
COPY . .

RUN go mod download
RUN go build -o krillinai ./cmd/server

EXPOSE 8888

CMD ["./krillinai"]

Kubernetes部署配置

apiVersion: apps/v1
kind: Deployment
metadata:
  name: krillinai
spec:
  replicas: 3
  selector:
    matchLabels:
      app: krillinai
  template:
    metadata:
      labels:
        app: krillinai
    spec:
      containers:
      - name: krillinai
        image: krillinai:latest
        ports:
        - containerPort: 8888
        env:
        - name: OPENAI_API_KEY
          valueFrom:
            secretKeyRef:
              name: api-secrets
              key: openai-api-key
        resources:
          requests:
            memory: "1Gi"
            cpu: "500m"
          limits:
            memory: "2Gi"
            cpu: "1"
---
apiVersion: v1
kind: Service
metadata:
  name: krillinai-service
spec:
  selector:
    app: krillinai
  ports:
  - protocol: TCP
    port: 80
    targetPort: 8888

总结

KrillinAI提供了强大而灵活的API接口,使开发者能够轻松集成专业的视频翻译和配音功能。通过本文的详细指南,您可以:

  1. 快速集成:使用提供的客户端示例快速接入现有系统
  2. 灵活配置:根据需求选择不同的语音识别和翻译服务提供商
  3. 扩展功能:利用词汇替换、批量处理等高级功能
  4. 确保稳定:通过监控和错误处理机制保证服务可靠性
  5. 优化性能:根据硬件资源调整并发配置和模型选择

无论您是构建内容创作平台、在线教育系统还是多媒体处理应用,KrillinAI都能为您提供专业级的视频翻译解决方案。

【免费下载链接】KrillinAI 基于AI大模型的视频翻译和配音工具,专业级翻译,一键部署全流程 【免费下载链接】KrillinAI 项目地址: https://gitcode.com/GitHub_Trending/kr/KrillinAI

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值