Florence-2-large-ft部署指南:云端与本地部署方案

Florence-2-large-ft部署指南:云端与本地部署方案

【免费下载链接】Florence-2-large-ft 【免费下载链接】Florence-2-large-ft 项目地址: https://ai.gitcode.com/mirrors/Microsoft/Florence-2-large-ft

概述

Florence-2-large-ft是微软推出的多模态视觉基础模型,具备0.77B参数规模,经过下游任务精调,能够处理图像描述、目标检测、OCR等多种视觉任务。本文将详细介绍Florence-2-large-ft的云端和本地部署方案,帮助开发者快速上手。

模型特性

特性规格说明
参数量0.77B中等规模,平衡性能与效率
精度FP16支持半精度浮点运算
架构Encoder-Decoder序列到序列生成架构
输入分辨率768×768标准输入图像尺寸
最大序列长度1024文本序列最大长度

环境要求

硬件要求

mermaid

软件依赖

# 核心依赖
pip install torch>=1.13.0
pip install transformers>=4.41.0
pip install Pillow>=9.0.0
pip install requests>=2.28.0

# 可选依赖
pip install accelerate  # 分布式推理加速
pip install bitsandbytes  # 量化支持

云端部署方案

Hugging Face Inference API

import requests
import base64
from PIL import Image
import io

# 配置API端点
API_URL = "https://api-inference.huggingface.co/models/microsoft/Florence-2-large-ft"
headers = {"Authorization": "Bearer YOUR_HF_TOKEN"}

def query_florence2(image_path, prompt="<CAPTION>"):
    # 读取并编码图像
    with open(image_path, "rb") as f:
        image_data = base64.b64encode(f.read()).decode("utf-8")
    
    # 构建请求载荷
    payload = {
        "inputs": {
            "image": image_data,
            "text": prompt
        }
    }
    
    # 发送请求
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

# 使用示例
result = query_florence2("car.jpg", "<OD>")
print(result)

AWS SageMaker部署

import sagemaker
from sagemaker.huggingface import HuggingFaceModel

# 配置SageMaker
role = sagemaker.get_execution_role()
sagemaker_session = sagemaker.Session()

# 创建模型
huggingface_model = HuggingFaceModel(
    model_data="s3://your-bucket/florence-2-large-ft/model.tar.gz",
    role=role,
    transformers_version="4.41",
    pytorch_version="2.0",
    py_version="py310",
)

# 部署端点
predictor = huggingface_model.deploy(
    initial_instance_count=1,
    instance_type="ml.g4dn.xlarge"
)

# 推理调用
result = predictor.predict({
    "image": image_base64,
    "prompt": "<CAPTION>"
})

本地部署方案

基础本地部署

import torch
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
import requests

class Florence2Deployer:
    def __init__(self, device=None, torch_dtype=None):
        self.device = device or ("cuda:0" if torch.cuda.is_available() else "cpu")
        self.torch_dtype = torch_dtype or (torch.float16 if torch.cuda.is_available() else torch.float32)
        
        # 加载模型和处理器
        self.model = AutoModelForCausalLM.from_pretrained(
            "microsoft/Florence-2-large-ft",
            torch_dtype=self.torch_dtype,
            trust_remote_code=True
        ).to(self.device)
        
        self.processor = AutoProcessor.from_pretrained(
            "microsoft/Florence-2-large-ft",
            trust_remote_code=True
        )
    
    def inference(self, image, prompt, max_new_tokens=1024):
        """执行推理"""
        inputs = self.processor(
            text=prompt, 
            images=image, 
            return_tensors="pt"
        ).to(self.device, self.torch_dtype)
        
        generated_ids = self.model.generate(
            input_ids=inputs["input_ids"],
            pixel_values=inputs["pixel_values"],
            max_new_tokens=max_new_tokens,
            do_sample=False,
            num_beams=3
        )
        
        generated_text = self.processor.batch_decode(
            generated_ids, 
            skip_special_tokens=False
        )[0]
        
        return self.processor.post_process_generation(
            generated_text, 
            task=prompt, 
            image_size=(image.width, image.height)
        )

# 使用示例
deployer = Florence2Deployer()
image = Image.open("car.jpg")
result = deployer.inference(image, "<OD>")
print(result)

Docker容器化部署

# Dockerfile
FROM pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime

WORKDIR /app

# 安装依赖
RUN pip install transformers==4.41.0 Pillow==9.5.0 requests==2.28.2

# 复制模型文件
COPY . .

# 暴露端口
EXPOSE 8000

# 启动FastAPI服务
CMD ["python", "app.py"]
# app.py - FastAPI服务
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import JSONResponse
import torch
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
import io

app = FastAPI(title="Florence-2-large-ft API")

# 全局模型实例
model = None
processor = None

@app.on_event("startup")
async def load_model():
    global model, processor
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
    
    model = AutoModelForCausalLM.from_pretrained(
        "microsoft/Florence-2-large-ft",
        torch_dtype=torch_dtype,
        trust_remote_code=True
    ).to(device)
    
    processor = AutoProcessor.from_pretrained(
        "microsoft/Florence-2-large-ft",
        trust_remote_code=True
    )

@app.post("/inference")
async def inference_endpoint(
    image: UploadFile = File(...),
    prompt: str = "<CAPTION>"
):
    # 读取图像
    image_data = await image.read()
    img = Image.open(io.BytesIO(image_data))
    
    # 执行推理
    inputs = processor(text=prompt, images=img, return_tensors="pt")
    generated_ids = model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        num_beams=3
    )
    
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    result = processor.post_process_generation(
        generated_text, 
        task=prompt, 
        image_size=(img.width, img.height)
    )
    
    return JSONResponse(content=result)

性能优化策略

量化部署

from transformers import BitsAndBytesConfig
import torch

# 4-bit量化配置
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True,
)

# 量化模型加载
model = AutoModelForCausalLM.from_pretrained(
    "microsoft/Florence-2-large-ft",
    quantization_config=quantization_config,
    torch_dtype=torch.float16,
    trust_remote_code=True
)

批处理优化

def batch_inference(images, prompts):
    """批处理推理优化"""
    processed_inputs = []
    for image, prompt in zip(images, prompts):
        inputs = processor(text=prompt, images=image, return_tensors="pt")
        processed_inputs.append(inputs)
    
    # 合并批处理
    batch = {
        "input_ids": torch.cat([x["input_ids"] for x in processed_inputs], dim=0),
        "pixel_values": torch.cat([x["pixel_values"] for x in processed_inputs], dim=0),
        "attention_mask": torch.cat([x.get("attention_mask", torch.ones_like(x["input_ids"])) 
                                   for x in processed_inputs], dim=0)
    }
    
    generated_ids = model.generate(**batch, max_new_tokens=1024, num_beams=3)
    
    results = []
    for i, gen_ids in enumerate(generated_ids):
        generated_text = processor.batch_decode([gen_ids], skip_special_tokens=False)[0]
        result = processor.post_process_generation(
            generated_text, 
            task=prompts[i], 
            image_size=(images[i].width, images[i].height)
        )
        results.append(result)
    
    return results

任务提示词参考

Florence-2-large-ft支持多种视觉任务,通过不同的提示词触发:

任务类型提示词输出格式
图像描述<CAPTION>文本描述
详细描述<DETAILED_CAPTION>详细文本描述
目标检测<OD>边界框和标签
OCR识别<OCR>识别文本
区域OCR<OCR_WITH_REGION>带位置的文本
区域提议<REGION_PROPOSAL>候选区域

监控与日志

import logging
import time
from prometheus_client import Counter, Histogram

# 监控指标
REQUEST_COUNT = Counter('inference_requests_total', 'Total inference requests')
REQUEST_LATENCY = Histogram('inference_latency_seconds', 'Inference latency')

class MonitoredFlorence2(Florence2Deployer):
    @REQUEST_LATENCY.time()
    def inference(self, image, prompt, max_new_tokens=1024):
        REQUEST_COUNT.inc()
        start_time = time.time()
        
        result = super().inference(image, prompt, max_new_tokens)
        
        latency = time.time() - start_time
        logging.info(f"Inference completed in {latency:.2f}s")
        
        return result

故障排除

常见问题及解决方案

问题原因解决方案
CUDA内存不足显存不足使用量化或减小批处理大小
推理速度慢硬件限制启用TensorRT优化
模型加载失败网络问题使用本地模型文件
输出格式错误提示词错误检查提示词格式

健康检查端点

@app.get("/health")
async def health_check():
    return {
        "status": "healthy",
        "model_loaded": model is not None,
        "device": str(model.device) if model else "none",
        "timestamp": time.time()
    }

部署架构对比

mermaid

总结

Florence-2-large-ft作为多模态视觉基础模型,提供了灵活的部署方案。云端部署适合快速原型开发和中小规模应用,而本地部署更适合对数据安全性和延迟有严格要求的企业场景。通过合理的性能优化和监控策略,可以在各种环境下实现高效稳定的模型服务。

选择部署方案时,需要综合考虑业务需求、资源约束和技术团队能力,选择最适合的部署策略。无论选择哪种方案,Florence-2-large-ft都能为视觉AI应用提供强大的基础能力支撑。

【免费下载链接】Florence-2-large-ft 【免费下载链接】Florence-2-large-ft 项目地址: https://ai.gitcode.com/mirrors/Microsoft/Florence-2-large-ft

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值