E2B Fragments交通物流:路径规划与供应链管理

E2B Fragments交通物流:路径规划与供应链管理

【免费下载链接】fragments Open-source Next.js template for building apps that are fully generated by AI. By E2B. 【免费下载链接】fragments 项目地址: https://gitcode.com/GitHub_Trending/fr/fragments

概述

在当今数字化时代,交通物流行业面临着前所未有的挑战与机遇。传统物流系统往往存在效率低下、成本高昂、响应迟缓等问题。E2B Fragments作为一个由AI驱动的开源应用构建平台,为交通物流行业提供了革命性的解决方案。

通过结合人工智能的强大能力与安全的代码执行环境,E2B Fragments能够快速生成专业的物流管理应用,实现智能路径规划、实时供应链监控和自动化决策支持。

核心优势

🚀 快速原型开发

  • AI驱动生成:基于自然语言描述自动生成完整应用
  • 多技术栈支持:Python、Next.js、Vue.js、Streamlit等多种框架
  • 实时预览:即时查看生成结果,快速迭代优化

🔒 安全执行环境

  • 沙箱隔离:所有代码在安全的E2B环境中执行
  • 依赖管理:自动处理Python和npm包依赖
  • 企业级安全:符合行业安全标准的数据处理

📊 专业物流功能

  • 路径优化算法:集成Dijkstra、A*、遗传算法等
  • 实时数据可视化:动态展示物流网络状态
  • 预测分析:基于历史数据的智能预测

技术架构

mermaid

物流应用场景

1. 智能路径规划系统

问题场景:传统物流路径规划往往依赖人工经验,效率低下且容易出错。

E2B解决方案

import numpy as np
import pandas as pd
import networkx as nx
from geopy.distance import geodesic
import streamlit as st

class LogisticsPathOptimizer:
    def __init__(self, locations, constraints):
        self.locations = locations
        self.constraints = constraints
        self.graph = self._build_graph()
    
    def _build_graph(self):
        G = nx.Graph()
        for i, loc1 in enumerate(self.locations):
            for j, loc2 in enumerate(self.locations):
                if i != j:
                    distance = geodesic(loc1['coords'], loc2['coords']).km
                    time_estimate = distance / self.constraints['avg_speed']
                    cost = distance * self.constraints['cost_per_km']
                    G.add_edge(i, j, weight=cost, distance=distance, time=time_estimate)
        return G
    
    def find_optimal_route(self, start, end):
        """使用Dijkstra算法寻找最优路径"""
        path = nx.shortest_path(self.graph, start, end, weight='weight')
        total_cost = nx.shortest_path_length(self.graph, start, end, weight='weight')
        total_distance = sum(self.graph[path[i]][path[i+1]]['distance'] 
                           for i in range(len(path)-1))
        return path, total_cost, total_distance

# Streamlit应用界面
st.title("智能物流路径规划系统")
st.sidebar.header("约束条件设置")
avg_speed = st.sidebar.slider("平均速度(km/h)", 30, 120, 60)
cost_per_km = st.sidebar.number_input("每公里成本(元)", 1.0, 10.0, 2.5)

# 示例位置数据
locations = [
    {'name': '仓库A', 'coords': (31.2304, 121.4737)},
    {'name': '客户B', 'coords': (31.2204, 121.4837)},
    {'name': '客户C', 'coords': (31.2404, 121.4637)}
]

optimizer = LogisticsPathOptimizer(locations, {
    'avg_speed': avg_speed,
    'cost_per_km': cost_per_km
})

start_point = st.selectbox("起点", [loc['name'] for loc in locations])
end_point = st.selectbox("终点", [loc['name'] for loc in locations])

if st.button("计算最优路径"):
    start_idx = next(i for i, loc in enumerate(locations) if loc['name'] == start_point)
    end_idx = next(i for i, loc in enumerate(locations) if loc['name'] == end_point)
    
    path, cost, distance = optimizer.find_optimal_route(start_idx, end_idx)
    
    st.success(f"最优路径成本: {cost:.2f}元")
    st.info(f"总距离: {distance:.2f}公里")
    st.write("路径顺序:", " → ".join([locations[i]['name'] for i in path]))

2. 实时供应链监控看板

功能特性

  • 实时货物追踪
  • 库存水平监控
  • 运输状态可视化
  • 异常预警系统
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime, timedelta
import random

class SupplyChainDashboard:
    def __init__(self):
        self.data = self._generate_sample_data()
    
    def _generate_sample_data(self):
        """生成模拟供应链数据"""
        dates = pd.date_range(start='2024-01-01', end='2024-01-31', freq='D')
        products = ['电子产品', '食品', '服装', '药品', '机械设备']
        warehouses = ['北京仓', '上海仓', '广州仓', '成都仓', '武汉仓']
        
        data = []
        for date in dates:
            for product in products:
                for warehouse in warehouses:
                    data.append({
                        'date': date,
                        'product': product,
                        'warehouse': warehouse,
                        'inventory': random.randint(100, 1000),
                        'orders': random.randint(10, 100),
                        'shipments': random.randint(5, 50)
                    })
        return pd.DataFrame(data)
    
    def create_dashboard(self):
        st.title("实时供应链监控看板")
        
        # 库存概览
        col1, col2, col3 = st.columns(3)
        total_inventory = self.data['inventory'].sum()
        total_orders = self.data['orders'].sum()
        total_shipments = self.data['shipments'].sum()
        
        col1.metric("总库存", f"{total_inventory:,}")
        col2.metric("总订单", f"{total_orders:,}")
        col3.metric("总发货", f"{total_shipments:,}")
        
        # 库存趋势图
        inventory_trend = self.data.groupby('date')['inventory'].sum().reset_index()
        fig1 = px.line(inventory_trend, x='date', y='inventory', 
                      title='库存趋势变化')
        st.plotly_chart(fig1)
        
        # 仓库库存分布
        warehouse_inventory = self.data.groupby('warehouse')['inventory'].sum().reset_index()
        fig2 = px.pie(warehouse_inventory, values='inventory', names='warehouse',
                     title='各仓库库存分布')
        st.plotly_chart(fig2)
        
        # 产品销量热力图
        product_sales = self.data.groupby(['product', 'warehouse'])['orders'].sum().reset_index()
        fig3 = px.density_heatmap(product_sales, x='warehouse', y='product', z='orders',
                                title='产品-仓库销量热力图')
        st.plotly_chart(fig3)

# 启动看板
dashboard = SupplyChainDashboard()
dashboard.create_dashboard()

3. 多目标优化算法

算法对比表

算法类型适用场景时间复杂度空间复杂度优点缺点
Dijkstra单源最短路径O((V+E)logV)O(V)保证最优解不能处理负权边
A*算法启发式搜索O(b^d)O(b^d)搜索效率高需要好的启发函数
遗传算法多目标优化O(n²)O(n)全局搜索能力强参数调优复杂
蚁群算法路径优化O(n²·m)O(n²)并行性好收敛速度慢
import numpy as np
from typing import List, Tuple
import matplotlib.pyplot as plt

class MultiObjectiveLogisticsOptimizer:
    def __init__(self, nodes: List[Tuple[float, float]], 
                 demand: List[float], capacity: float):
        self.nodes = nodes
        self.demand = demand
        self.capacity = capacity
        self.n_nodes = len(nodes)
    
    def _calculate_distance(self, i: int, j: int) -> float:
        """计算两点之间的欧几里得距离"""
        return np.sqrt((self.nodes[i][0] - self.nodes[j][0])**2 + 
                      (self.nodes[i][1] - self.nodes[j][1])**2)
    
    def objective_functions(self, route: List[int]) -> Tuple[float, float, float]:
        """计算三个目标函数:总距离、总时间、总成本"""
        total_distance = 0
        total_time = 0
        total_cost = 0
        current_load = 0
        
        for i in range(len(route) - 1):
            from_node = route[i]
            to_node = route[i + 1]
            
            distance = self._calculate_distance(from_node, to_node)
            time = distance / 60  # 假设平均速度60km/h
            cost = distance * 2.5  # 假设每公里成本2.5元
            
            total_distance += distance
            total_time += time
            total_cost += cost
            
            # 考虑载重约束
            current_load += self.demand[to_node]
            if current_load > self.capacity:
                # 违反载重约束,增加惩罚项
                total_cost += 1000 * (current_load - self.capacity)
        
        return total_distance, total_time, total_cost
    
    def nsga_ii_optimization(self, population_size: int = 100, 
                           generations: int = 100) -> List[List[int]]:
        """NSGA-II多目标优化算法实现"""
        # 初始化种群
        population = []
        for _ in range(population_size):
            route = list(range(self.n_nodes))
            np.random.shuffle(route)
            population.append(route)
        
        # 多代进化
        for generation in range(generations):
            # 评估目标函数
            objectives = [self.objective_functions(ind) for ind in population]
            
            # 非支配排序和拥挤度计算
            fronts = self._non_dominated_sorting(objectives)
            crowding_distances = self._calculate_crowding_distance(objectives, fronts)
            
            # 选择、交叉、变异
            new_population = self._selection(population, fronts, crowding_distances)
            population = new_population
        
        return population

# 使用示例
nodes = [(0, 0), (10, 20), (30, 40), (50, 10), (70, 30)]
demand = [0, 100, 200, 150, 80]  # 每个节点的需求
capacity = 300  # 车辆容量

optimizer = MultiObjectiveLogisticsOptimizer(nodes, demand, capacity)
optimal_routes = optimizer.nsga_ii_optimization()

print("找到的帕累托最优解:")
for i, route in enumerate(optimal_routes[:5]):  # 显示前5个解
    dist, time, cost = optimizer.objective_functions(route)
    print(f"路线{i+1}: {route}, 距离: {dist:.2f}km, 时间: {time:.2f}h, 成本: {cost:.2f}元")

部署与集成

环境配置

# 克隆项目
git clone https://gitcode.com/GitHub_Trending/fr/fragments
cd fragments

# 安装依赖
npm install

# 配置环境变量
cat > .env.local << EOF
E2B_API_KEY="your-e2b-api-key"
OPENAI_API_KEY="your-openai-key"
NEXT_PUBLIC_SITE_URL="http://localhost:3000"
EOF

# 启动开发服务器
npm run dev

自定义物流模板

创建专门的物流优化模板:

{
  "logistics-optimizer": {
    "name": "物流路径优化专家",
    "lib": [
      "python",
      "numpy",
      "pandas",
      "networkx",
      "geopy",
      "streamlit",
      "plotly"
    ],
    "file": "logistics_app.py",
    "instructions": "专门用于物流路径优化和供应链管理的应用。集成多种优化算法,支持实时数据可视化和多目标决策。",
    "port": 8501
  }
}

性能优化策略

1. 算法优化

  • 并行计算:利用多核处理器并行执行路径计算
  • 缓存机制:缓存常用路径计算结果,减少重复计算
  • 近似算法:对于大规模问题,使用近似算法保证实时性

2. 数据管理

  • 增量更新:只处理变化的数据,减少计算量
  • 数据分区:按地理区域或业务维度分区处理
  • 压缩存储:使用高效的数据压缩格式

3. 系统架构

flowchart TD
    A[用户请求] --> B[API网关]
    B --> C[负载均衡]
    C --> D[计算节点1]
    C --> E[计算节点2]
    C --> F[计算节点N]
    
    D --> G[Redis缓存]
    E --> G
    F --> G
    
    G --> H[数据库集群]
    
    subgraph 监控系统
        I[性能监控]
        J[错误日志]
        K[业务指标]
    end
    
    D --> I
    E --> I
    F --> I

【免费下载链接】fragments Open-source Next.js template for building apps that are fully generated by AI. By E2B. 【免费下载链接】fragments 项目地址: https://gitcode.com/GitHub_Trending/fr/fragments

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值