突破单节点瓶颈:Grasscutter多服务器监控系统全攻略

突破单节点瓶颈:Grasscutter多服务器监控系统全攻略

【免费下载链接】Grasscutter A server software reimplementation for a certain anime game. 【免费下载链接】Grasscutter 项目地址: https://gitcode.com/GitHub_Trending/gr/Grasscutter

引言:分布式架构下的服务器管理痛点

你是否还在为单服务器部署的性能瓶颈而烦恼?当玩家数量激增,单节点架构难以承受高并发压力时,多服务器集群成为必然选择。然而,随之而来的是服务器状态监控、资源调配和故障排查的复杂性。本文将详细介绍如何构建Grasscutter多服务器监控系统,帮助你轻松管理分布式游戏服务架构。

读完本文,你将获得:

  • 多服务器部署的架构设计与配置方法
  • 实时监控系统的搭建与关键指标分析
  • 自动化告警与故障转移策略
  • 性能优化与资源调配技巧
  • 完整的集群管理工具链实现方案

一、Grasscutter集群架构设计

1.1 服务器角色划分

Grasscutter支持三种运行模式,为集群部署提供了灵活基础:

public enum ServerRunMode {
    HYBRID,       // 混合模式:同时运行游戏服务器和调度服务器
    DISPATCH_ONLY,// 仅调度模式:仅运行调度服务器
    GAME_ONLY     // 仅游戏模式:仅运行游戏服务器
}

在集群环境中,建议采用以下角色划分:

  • 调度服务器(DISPATCH_ONLY):负责玩家认证、服务器列表管理和负载均衡
  • 游戏服务器(GAME_ONLY):处理游戏逻辑,可部署多个实例
  • 监控服务器:收集所有节点的运行数据并提供可视化界面

1.2 集群拓扑结构

mermaid

1.3 配置文件设置

在ConfigContainer.java中,我们可以配置多个游戏区域(Region),每个区域对应一个游戏服务器实例:

public static class Dispatch {
    /* 服务器数组 */
    public List<Region> regions = List.of(
        new Region("os_usa", "美国服务器", "192.168.1.101", 22102),
        new Region("os_euro", "欧洲服务器", "192.168.1.102", 22102),
        new Region("os_asia", "亚洲服务器", "192.168.1.103", 22102)
    );
    
    /* 调度服务器URL */
    public String dispatchUrl = "ws://192.168.1.100:1111";
    /* 加密密钥 */
    public byte[] encryptionKey = Crypto.createSessionKey(32);
    /* 认证密钥 */
    public String dispatchKey = Utils.base64Encode(Crypto.createSessionKey(32));
}

1.4 数据库配置

集群环境下,所有服务器需连接到同一数据库:

public static class Database {
    public DataStore server = new DataStore();
    public DataStore game = new DataStore();

    public static class DataStore {
        public String connectionUri = "mongodb://192.168.1.200:27017";
        public String collection = "grasscutter";
    }
}

二、多服务器监控系统实现

2.1 监控指标设计

一个完善的监控系统需要关注以下关键指标:

指标类别具体指标监控频率预警阈值
系统资源CPU使用率5秒>80%
系统资源内存使用率5秒>85%
系统资源磁盘空间1分钟>90%
网络指标吞吐量1秒>100Mbps
网络指标延迟1秒>100ms
网络指标丢包率1秒>1%
游戏指标在线玩家数10秒-
游戏指标平均帧率10秒<20fps
游戏指标会话数10秒-
游戏指标任务完成率1分钟<95%
错误指标异常数量1分钟>5个
错误指标连接失败数1分钟>3个

2.2 数据收集机制

Grasscutter的ServerHelper类为服务器间通信提供了基础:

// 创建服务器助手实例,用于跨服务器通信
new ServerHelper(gameServer, httpServer);

我们可以扩展这一机制,实现监控数据收集:

public class MonitorAgent {
    private final HttpClient httpClient;
    private final String monitorServerUrl;
    private final ScheduledExecutorService scheduler;
    
    public MonitorAgent(String monitorServerUrl) {
        this.httpClient = HttpClient.newHttpClient();
        this.monitorServerUrl = monitorServerUrl;
        this.scheduler = Executors.newScheduledThreadPool(1);
        startMonitoring();
    }
    
    private void startMonitoring() {
        // 定期收集并发送监控数据
        scheduler.scheduleAtFixedRate(this::collectAndSendMetrics, 
                                     0, 5, TimeUnit.SECONDS);
    }
    
    private void collectAndSendMetrics() {
        ServerMetrics metrics = new ServerMetrics();
        // 收集系统资源指标
        metrics.setCpuUsage(collectCpuUsage());
        metrics.setMemoryUsage(collectMemoryUsage());
        // 收集游戏服务器指标
        metrics.setPlayerCount(getPlayerCount());
        metrics.setSessionCount(getSessionCount());
        // 发送到监控服务器
        sendMetrics(metrics);
    }
    
    // 其他实现方法...
}

2.3 实时监控面板

使用Web技术构建实时监控面板,推荐采用以下技术栈:

  • 前端:React + TypeScript + ECharts
  • 后端:Node.js + Express
  • 实时通信:WebSocket

Grasscutter已提供基础的HTTP服务器框架:

public class HttpServer {
    private final Javalin app;
    
    public HttpServer() {
        this.app = Javalin.create();
        // 添加路由...
        app.start(config.server.http.bindPort);
    }
    
    public void addRouter(Class<? extends Handler> handler) {
        try {
            // 注册HTTP处理器
            app.routes(() -> handler.newInstance().applyRoutes());
        } catch (Exception e) {
            Grasscutter.getLogger().error("Failed to add router", e);
        }
    }
}

我们可以扩展HttpServer,添加监控数据API端点:

public class MonitorHttpHandler implements Handler {
    private final MonitorService monitorService;
    
    public MonitorHttpHandler(MonitorService service) {
        this.monitorService = service;
    }
    
    @Override
    public void applyRoutes() {
        // 获取所有服务器状态
        get("/api/servers", ctx -> {
            ctx.json(monitorService.getAllServerStatus());
        });
        
        // 获取特定服务器详细指标
        get("/api/servers/:id/metrics", ctx -> {
            String serverId = ctx.pathParam("id");
            ctx.json(monitorService.getServerMetrics(serverId));
        });
        
        // 获取告警历史
        get("/api/alerts", ctx -> {
            ctx.json(monitorService.getAlertHistory());
        });
    }
}

三、配置多服务器环境

3.1 调度服务器配置

调度服务器负责管理游戏服务器列表和玩家分配,关键配置如下:

{
  "server": {
    "runMode": "DISPATCH_ONLY",
    "dispatch": {
      "regions": [
        {
          "Name": "os_usa",
          "Title": "美国服务器",
          "Ip": "192.168.1.101",
          "Port": 22102
        },
        {
          "Name": "os_euro",
          "Title": "欧洲服务器",
          "Ip": "192.168.1.102",
          "Port": 22102
        },
        {
          "Name": "os_asia",
          "Title": "亚洲服务器",
          "Ip": "192.168.1.103",
          "Port": 22102
        }
      ],
      "dispatchUrl": "ws://192.168.1.100:1111",
      "dispatchKey": "your_secure_dispatch_key"
    },
    "http": {
      "bindAddress": "0.0.0.0",
      "bindPort": 443,
      "startImmediately": true
    }
  }
}

3.2 游戏服务器配置

游戏服务器配置示例:

{
  "server": {
    "runMode": "GAME_ONLY",
    "game": {
      "bindAddress": "0.0.0.0",
      "bindPort": 22102,
      "accessAddress": "192.168.1.101",
      "accessPort": 22102,
      "enableConsole": true,
      "loadEntitiesForPlayerRange": 300
    },
    "monitor": {
      "enabled": true,
      "serverUrl": "http://192.168.1.200:8080",
      "serverId": "game-server-usa-01"
    }
  },
  "databaseInfo": {
    "server": {
      "connectionUri": "mongodb://192.168.1.200:27017",
      "collection": "grasscutter"
    },
    "game": {
      "connectionUri": "mongodb://192.168.1.200:27017",
      "collection": "grasscutter"
    }
  }
}

3.3 负载均衡配置

Grasscutter的调度服务器可以通过扩展实现负载均衡功能:

public class LoadBalancedDispatchServer extends DispatchServer {
    private final List<GameServerInfo> gameServers = new CopyOnWriteArrayList<>();
    private final LoadBalancingStrategy loadBalancingStrategy;
    
    public LoadBalancedDispatchServer(LoadBalancingStrategy strategy) {
        this.loadBalancingStrategy = strategy;
    }
    
    public void registerGameServer(GameServerInfo serverInfo) {
        gameServers.add(serverInfo);
        // 定期检查服务器健康状态
        scheduleServerHealthCheck(serverInfo);
    }
    
    public GameServerInfo selectGameServer() {
        // 根据负载均衡策略选择合适的游戏服务器
        return loadBalancingStrategy.select(gameServers);
    }
    
    private void scheduleServerHealthCheck(GameServerInfo server) {
        // 实现服务器健康检查逻辑
    }
}

// 负载均衡策略接口
public interface LoadBalancingStrategy {
    GameServerInfo select(List<GameServerInfo> servers);
}

// 实现多种负载均衡算法
public class RoundRobinStrategy implements LoadBalancingStrategy {
    private int currentIndex = 0;
    
    @Override
    public GameServerInfo select(List<GameServerInfo> servers) {
        if (servers.isEmpty()) return null;
        currentIndex = (currentIndex + 1) % servers.size();
        return servers.get(currentIndex);
    }
}

public class LeastLoadStrategy implements LoadBalancingStrategy {
    @Override
    public GameServerInfo select(List<GameServerInfo> servers) {
        if (servers.isEmpty()) return null;
        // 选择负载最低的服务器
        return servers.stream()
            .min(Comparator.comparingInt(GameServerInfo::getPlayerCount))
            .orElse(null);
    }
}

四、自动化监控与告警

4.1 告警规则配置

public class AlertRule {
    private String id;
    private String metric;
    private ComparisonOperator operator;
    private double threshold;
    private int duration; // 持续时间(秒)
    private String severity; // INFO, WARNING, CRITICAL
    private String message;
    
    // Getters and setters...
}

public enum ComparisonOperator {
    GREATER_THAN,
    LESS_THAN,
    GREATER_THAN_OR_EQUAL,
    LESS_THAN_OR_EQUAL,
    EQUALS,
    NOT_EQUALS
}

配置示例:

[
  {
    "id": "cpu_high",
    "metric": "cpu_usage",
    "operator": "GREATER_THAN",
    "threshold": 80,
    "duration": 60,
    "severity": "WARNING",
    "message": "CPU使用率持续60秒高于80%"
  },
  {
    "id": "memory_critical",
    "metric": "memory_usage",
    "operator": "GREATER_THAN",
    "threshold": 90,
    "duration": 30,
    "severity": "CRITICAL",
    "message": "内存使用率持续30秒高于90%"
  },
  {
    "id": "low_players",
    "metric": "player_count",
    "operator": "LESS_THAN",
    "threshold": 5,
    "duration": 300,
    "severity": "INFO",
    "message": "玩家数量持续5分钟低于5人"
  }
]

4.2 告警触发与通知

public class AlertEngine {
    private final List<AlertRule> rules;
    private final Map<String, MetricHistory> metricHistoryMap = new ConcurrentHashMap<>();
    private final AlertNotifier notifier;
    
    public AlertEngine(List<AlertRule> rules, AlertNotifier notifier) {
        this.rules = rules;
        this.notifier = notifier;
    }
    
    public void processMetric(String serverId, String metric, double value) {
        // 记录指标历史
        MetricHistory history = metricHistoryMap.computeIfAbsent(
            serverId + ":" + metric, 
            k -> new MetricHistory(metric)
        );
        history.addValue(value);
        
        // 检查是否触发告警规则
        checkAlertRules(serverId, metric, history);
    }
    
    private void checkAlertRules(String serverId, String metric, MetricHistory history) {
        for (AlertRule rule : rules) {
            if (!rule.getMetric().equals(metric)) continue;
            
            // 检查指标是否满足告警条件
            if (isConditionMet(rule, history) && !history.isAlertActive(rule.getId())) {
                // 触发告警
                Alert alert = createAlert(serverId, rule, history);
                history.setAlertActive(rule.getId(), true);
                notifier.sendAlert(alert);
            } else if (!isConditionMet(rule, history) && history.isAlertActive(rule.getId())) {
                // 告警恢复
                AlertRecovery recovery = createAlertRecovery(serverId, rule);
                history.setAlertActive(rule.getId(), false);
                notifier.sendRecovery(recovery);
            }
        }
    }
    
    private boolean isConditionMet(AlertRule rule, MetricHistory history) {
        // 检查最近一段时间内的指标是否满足告警条件
        List<MetricValue> recentValues = history.getValuesWithin(rule.getDuration());
        if (recentValues.size() < 2) return false;
        
        // 根据规则的比较操作符检查指标值
        switch (rule.getOperator()) {
            case GREATER_THAN:
                return recentValues.stream().allMatch(v -> v.getValue() > rule.getThreshold());
            case LESS_THAN:
                return recentValues.stream().allMatch(v -> v.getValue() < rule.getThreshold());
            // 其他操作符的实现...
            default:
                return false;
        }
    }
    
    // 其他方法实现...
}

4.3 告警通知渠道

public interface AlertNotifier {
    void sendAlert(Alert alert);
    void sendRecovery(AlertRecovery recovery);
}

public class CompositeAlertNotifier implements AlertNotifier {
    private final List<AlertNotifier> notifiers;
    
    public CompositeAlertNotifier(List<AlertNotifier> notifiers) {
        this.notifiers = notifiers;
    }
    
    @Override
    public void sendAlert(Alert alert) {
        notifiers.forEach(n -> n.sendAlert(alert));
    }
    
    @Override
    public void sendRecovery(AlertRecovery recovery) {
        notifiers.forEach(n -> n.sendRecovery(recovery));
    }
}

// 邮件通知器
public class EmailAlertNotifier implements AlertNotifier {
    private final EmailService emailService;
    private final String recipient;
    
    // 实现发送邮件逻辑...
}

// 短信通知器
public class SmsAlertNotifier implements AlertNotifier {
    private final SmsService smsService;
    private final String phoneNumber;
    
    // 实现发送短信逻辑...
}

// Discord通知器
public class DiscordAlertNotifier implements AlertNotifier {
    private final DiscordWebhookClient webhookClient;
    
    // 实现发送Discord消息逻辑...
}

五、性能优化与资源调配

5.1 动态负载均衡

基于实时监控数据实现动态负载均衡:

public class DynamicLoadBalancingStrategy implements LoadBalancingStrategy {
    private final MonitorService monitorService;
    
    public DynamicLoadBalancingStrategy(MonitorService monitorService) {
        this.monitorService = monitorService;
    }
    
    @Override
    public GameServerInfo selectGameServer(List<GameServerInfo> servers) {
        if (servers.isEmpty()) return null;
        
        // 获取所有服务器的当前负载
        Map<String, ServerMetrics> metricsMap = new HashMap<>();
        for (GameServerInfo server : servers) {
            ServerMetrics metrics = monitorService.getServerMetrics(server.getId());
            metricsMap.put(server.getId(), metrics);
        }
        
        // 基于多因素加权选择最佳服务器
        return servers.stream()
            .filter(this::isServerHealthy)
            .min(Comparator.comparingDouble(s -> calculateLoadScore(s, metricsMap.get(s.getId()))))
            .orElse(null);
    }
    
    private double calculateLoadScore(GameServerInfo server, ServerMetrics metrics) {
        // 简单实现:CPU使用率(40%) + 内存使用率(30%) + 玩家数量(30%)
        double cpuScore = metrics.getCpuUsage() * 0.4;
        double memoryScore = metrics.getMemoryUsage() * 0.3;
        double playerScore = (metrics.getPlayerCount() / server.getMaxPlayers()) * 0.3;
        
        return cpuScore + memoryScore + playerScore;
    }
    
    private boolean isServerHealthy(GameServerInfo server) {
        // 检查服务器是否健康
        ServerMetrics metrics = monitorService.getServerMetrics(server.getId());
        return metrics != null && 
               metrics.getCpuUsage() < 90 && 
               metrics.getMemoryUsage() < 90 &&
               metrics.getResponseTime() < 200;
    }
}

5.2 自动扩缩容策略

public class AutoScalingEngine {
    private final CloudProvider cloudProvider;
    private final MonitorService monitorService;
    private final LoadBalancingStrategy loadBalancingStrategy;
    private final int minServers;
    private final int maxServers;
    
    // 扩容阈值
    private final double scaleOutCpuThreshold = 70.0;
    private final double scaleOutMemoryThreshold = 70.0;
    private final int scaleOutPlayerThreshold = 50;
    
    // 缩容阈值
    private final double scaleInCpuThreshold = 30.0;
    private final double scaleInMemoryThreshold = 30.0;
    private final int scaleInPlayerThreshold = 10;
    
    public AutoScalingEngine(CloudProvider cloudProvider, MonitorService monitorService,
                            LoadBalancingStrategy loadBalancingStrategy,
                            int minServers, int maxServers) {
        this.cloudProvider = cloudProvider;
        this.monitorService = monitorService;
        this.loadBalancingStrategy = loadBalancingStrategy;
        this.minServers = minServers;
        this.maxServers = maxServers;
    }
    
    public void checkScalingNeed() {
        List<ServerMetrics> allMetrics = monitorService.getAllServerMetrics();
        int serverCount = allMetrics.size();
        
        // 计算平均负载
        double avgCpu = allMetrics.stream().mapToDouble(ServerMetrics::getCpuUsage).average().orElse(0);
        double avgMemory = allMetrics.stream().mapToDouble(ServerMetrics::getMemoryUsage).average().orElse(0);
        int totalPlayers = allMetrics.stream().mapToInt(ServerMetrics::getPlayerCount).sum();
        double avgPlayersPerServer = serverCount > 0 ? (double) totalPlayers / serverCount : 0;
        
        // 检查是否需要扩容
        if (serverCount < maxServers && 
            (avgCpu > scaleOutCpuThreshold || 
             avgMemory > scaleOutMemoryThreshold || 
             avgPlayersPerServer > scaleOutPlayerThreshold)) {
            
            // 扩容逻辑
            GameServerInfo newServer = cloudProvider.createGameServer();
            loadBalancingStrategy.registerGameServer(newServer);
            Grasscutter.getLogger().info("Auto-scaling out: added new game server. Total: " + (serverCount + 1));
        }
        // 检查是否需要缩容
        else if (serverCount > minServers && 
                 avgCpu < scaleInCpuThreshold && 
                 avgMemory < scaleInMemoryThreshold && 
                 avgPlayersPerServer < scaleInPlayerThreshold) {
            
            // 选择负载最低的服务器进行缩容
            GameServerInfo leastLoaded = findLeastLoadedServer(allMetrics);
            if (leastLoaded != null) {
                // 迁移玩家
                migratePlayers(leastLoaded);
                // 关闭服务器
                cloudProvider.terminateGameServer(leastLoaded.getId());
                loadBalancingStrategy.removeGameServer(leastLoaded.getId());
                Grasscutter.getLogger().info("Auto-scaling in: removed game server. Total: " + (serverCount - 1));
            }
        }
    }
    
    // 其他辅助方法...
}

六、监控系统部署与维护

6.1 部署架构

mermaid

6.2 部署步骤

  1. 准备环境
# 安装Docker和Docker Compose
sudo apt-get update
sudo apt-get install -y docker.io docker-compose

# 克隆Grasscutter仓库
git clone https://gitcode.com/GitHub_Trending/gr/Grasscutter.git
cd Grasscutter
  1. 配置监控服务

创建docker-compose.yml文件:

version: '3'

services:
  prometheus:
    image: prom/prometheus
    volumes:
      - ./prometheus.yml:/etc/prometheus/prometheus.yml
      - prometheus-data:/prometheus
    ports:
      - "9090:9090"
    restart: always
    
  grafana:
    image: grafana/grafana
    volumes:
      - grafana-data:/var/lib/grafana
      - ./grafana/provisioning:/etc/grafana/provisioning
    ports:
      - "3000:3000"
    environment:
      - GF_SECURITY_ADMIN_PASSWORD=your_secure_password
    depends_on:
      - prometheus
    restart: always
    
  alertmanager:
    image: prom/alertmanager
    volumes:
      - ./alertmanager.yml:/etc/alertmanager/alertmanager.yml
    ports:
      - "9093:9093"
    restart: always

volumes:
  prometheus-data:
  grafana-data:
  1. 配置Prometheus

创建prometheus.yml:

global:
  scrape_interval: 5s
  evaluation_interval: 5s

rule_files:
  - "alert.rules.yml"

alerting:
  alertmanagers:
  - static_configs:
    - targets:
      - alertmanager:9093

scrape_configs:
  - job_name: 'grasscutter_servers'
    static_configs:
      - targets: ['game-server-1:9100', 'game-server-2:9100', 'game-server-3:9100']
  1. 启动监控服务
docker-compose up -d
  1. 配置游戏服务器监控代理
# 在每个游戏服务器上安装node-exporter
sudo apt-get install -y prometheus-node-exporter

# 启动node-exporter
sudo systemctl enable prometheus-node-exporter
sudo systemctl start prometheus-node-exporter

# 部署Grasscutter监控代理
cd Grasscutter/monitor-agent
npm install
npm run build
nohup node dist/index.js &
  1. 配置Grafana面板

访问http://监控服务器IP:3000,使用管理员账号登录,导入Grasscutter监控面板模板。

6.3 日常维护与优化

  1. 定期备份配置
# 创建配置备份脚本 backup-configs.sh
#!/bin/bash
BACKUP_DIR="/backups/grasscutter/$(date +%Y%m%d)"
mkdir -p $BACKUP_DIR

# 备份配置文件
cp /path/to/Grasscutter/config.json $BACKUP_DIR/
cp /path/to/Grasscutter/prometheus.yml $BACKUP_DIR/
cp /path/to/Grasscutter/alertmanager.yml $BACKUP_DIR/

# 保留最近30天的备份
find /backups/grasscutter -type d -mtime +30 -delete
  1. 监控系统自身监控

定期检查监控系统的健康状态,确保监控数据的准确性和完整性。

  1. 性能调优

根据实际运行情况调整监控频率和保留策略:

# prometheus.yml中调整抓取间隔
global:
  scrape_interval: 10s  # 降低频率减轻负载
  evaluation_interval: 15s
  
# 调整数据保留时间
storage:
  retention: 15d  # 保留15天数据

七、总结与展望

通过本文介绍的方法,你已经掌握了Grasscutter多服务器监控系统的构建方法。从集群架构设计、监控指标选择、告警系统实现到自动化扩缩容策略,我们覆盖了分布式游戏服务管理的各个方面。

7.1 关键知识点回顾

  • Grasscutter的三种运行模式为集群部署提供了灵活基础
  • 监控系统应关注系统资源、网络指标、游戏指标和错误指标四大类
  • 多维度的告警规则和通知渠道确保及时响应异常情况
  • 动态负载均衡和自动扩缩容可显著提高系统可用性和资源利用率
  • Docker容器化部署简化了监控系统的搭建和维护

7.2 进阶方向

未来可以在以下方面进一步完善你的监控系统:

  1. AI预测分析:利用机器学习算法预测服务器负载和潜在故障
  2. 自动化运维:实现故障自动恢复和系统配置自动优化
  3. 玩家行为分析:结合游戏数据挖掘玩家行为模式,优化游戏体验
  4. 安全监控:添加异常行为检测,防范潜在的安全威胁
  5. 多区域部署:跨地域部署实现更高可用性和更低延迟

7.3 结语

多服务器监控系统是Grasscutter从单节点部署迈向企业级服务的关键一步。一个完善的监控系统不仅能帮助你及时发现和解决问题,还能为系统优化提供数据支持,最终提升玩家体验和系统稳定性。

希望本文提供的方案能帮助你构建强大的Grasscutter服务器集群,应对不断增长的玩家需求和业务挑战。如有任何问题或建议,欢迎在社区分享讨论。

7.4 扩展资源

  • Grasscutter官方文档:了解更多配置选项和API
  • Prometheus官方文档:深入学习指标收集和处理
  • Grafana插件市场:探索更多可视化面板和功能扩展
  • Docker容器编排指南:进一步优化部署和扩展策略

如果你觉得本文对你有帮助,请点赞、收藏并关注,以便获取更多Grasscutter高级应用教程。下期我们将探讨Grasscutter插件开发与生态系统构建,敬请期待!

【免费下载链接】Grasscutter A server software reimplementation for a certain anime game. 【免费下载链接】Grasscutter 项目地址: https://gitcode.com/GitHub_Trending/gr/Grasscutter

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值