Python Machine Learning (3rd Edition) 项目教程

Python Machine Learning (3rd Edition) 项目教程

项目地址:https://gitcode.com/gh_mirrors/py/python-machine-learning-book-3rd-edition

1. 项目目录结构及介绍

python-machine-learning-book-3rd-edition/
├── ch01/
├── ch02/
├── ch03/
├── ch04/
├── ch05/
├── ch06/
├── ch07/
├── ch08/
├── ch09/
├── ch10/
├── ch11/
├── ch12/
├── ch13/
├── ch14/
├── ch15/
├── ch16/
├── ch17/
├── ch18/
├── errata/
├── exercises/
├── convert_notebook_to_script.py
├── .gitignore
├── LICENSE.txt
└── README.md

目录结构说明

  • ch01/ 到 ch18/:这些目录包含了书中每个章节的代码示例。每个章节目录下可能包含多个Python脚本或Jupyter Notebook文件。
  • errata/:该目录可能包含书籍的勘误信息。
  • exercises/:该目录可能包含书籍中的练习题代码。
  • convert_notebook_to_script.py:一个Python脚本,可能用于将Jupyter Notebook文件转换为Python脚本。
  • .gitignore:Git的忽略文件配置。
  • LICENSE.txt:项目的开源许可证文件。
  • README.md:项目的介绍和使用说明文件。

2. 项目启动文件介绍

由于该项目主要是代码示例和练习,没有统一的启动文件。每个章节的代码示例可以单独运行。例如,如果你想运行第四章的代码,可以进入ch04/目录,找到相应的Python脚本或Jupyter Notebook文件并运行。

3. 项目配置文件介绍

该项目没有统一的配置文件。每个章节的代码示例可能会有自己的配置需求,例如导入必要的库或设置数据路径。具体的配置信息通常会在每个章节的代码文件中进行说明。

例如,在ch04/ch04.py文件中,可能会看到类似以下的配置代码:

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split

# 数据路径配置
data_path = 'path/to/your/data.csv'
data = pd.read_csv(data_path)

# 其他配置
test_size = 0.3
random_state = 42

每个章节的配置信息可能会有所不同,具体请参考相应章节的代码文件。

python-machine-learning-book-3rd-edition The "Python Machine Learning (3rd edition)" book code repository python-machine-learning-book-3rd-edition 项目地址: https://gitcode.com/gh_mirrors/py/python-machine-learning-book-3rd-edition

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

Learning Python, 3rd Edition Mark Lutz Book Description Publication Date: October 29, 2007 | ISBN-10: 0596513984 | ISBN-13: 978-0596513986 | Edition: Third Edition Portable, powerful, and a breeze to use, Python is ideal for both standalone programs and scripting applications. With this hands-on book, you can master the fundamentals of the core Python language quickly and efficiently, whether you're new to programming or just new to Python. Once you finish, you will know enough about the language to use it in any application domain you choose. Learning Python is based on material from author Mark Lutz's popular training courses, which he's taught over the past decade. Each chapter is a self-contained lesson that helps you thoroughly understand a key component of Python before you continue. Along with plenty of annotated examples, illustrations, and chapter summaries, every chapter also contains Brain Builder, a unique section with practical exercises and review quizzes that let you practice new skills and test your understanding as you go. This book covers: Types and Operations -- Python's major built-in object types in depth: numbers, lists, dictionaries, and more Statements and Syntax -- the code you type to create and process objects in Python, along with Python's general syntax model Functions -- Python's basic procedural tool for structuring and reusing code Modules -- packages of statements, functions, and other tools organized into larger components Classes and OOP -- Python's optional object-oriented programming tool for structuring code for customization and reuse Exceptions and Tools -- exception handling model and statements, plus a look at development tools for writing larger programs. Learning Python gives you a deep and complete understanding of the language that will help you comprehend any application-level examples of Python that you later encounter. If you're ready to discover what Google and YouTube see in Python, this book is the best way to get started.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魏鹭千Peacemaker

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值