Data Formulator集成测试:端到端测试与CI/CD流水线

Data Formulator集成测试:端到端测试与CI/CD流水线

【免费下载链接】data-formulator 🪄 Create rich visualizations with AI 【免费下载链接】data-formulator 项目地址: https://gitcode.com/GitHub_Trending/da/data-formulator

痛点:AI数据可视化工具的测试挑战

你还在为复杂的AI驱动数据可视化工具编写繁琐的端到端测试而头疼吗?Data Formulator作为一个结合了前端交互、后端AI处理和数据库操作的复杂系统,传统的单元测试难以覆盖完整的用户工作流。本文将为你揭秘如何构建完整的集成测试体系,并建立高效的CI/CD流水线。

读完本文你将获得:

  • Data Formulator端到端测试架构设计
  • 多环境测试策略与最佳实践
  • 完整的CI/CD流水线配置方案
  • 测试数据管理与Mock策略
  • 性能测试与负载测试方案

Data Formulator架构概述

在深入测试策略之前,让我们先了解Data Formulator的核心架构:

mermaid

技术栈矩阵

组件技术测试挑战
前端React + TypeScript + Vite交互测试、状态管理
后端Flask + Python 3.11+API测试、AI集成
AI处理LiteLLM + 多模型支持LLM响应Mock
数据库DuckDB + 多数据源数据一致性测试
实时通信Server-Sent Events异步测试

端到端测试架构设计

测试金字塔策略

mermaid

测试目录结构规划

tests/
├── unit/
│   ├── frontend/
│   ├── backend/
│   └── agents/
├── integration/
│   ├── api/
│   ├── database/
│   └── ai_agents/
├── e2e/
│   ├── cypress/
│   └── playwright/
├── performance/
└── fixtures/
    ├── test_data/
    └── mocks/

核心测试场景设计

1. 数据加载与处理测试

# tests/integration/test_data_loading.py
import pytest
from data_formulator.data_loader import ExternalDataLoader

class TestDataLoading:
    @pytest.mark.parametrize("file_format", ["csv", "json", "parquet"])
    def test_file_loading(self, file_format):
        """测试不同文件格式的数据加载"""
        loader = ExternalDataLoader()
        test_file = f"test_data/sample.{file_format}"
        
        # 加载测试数据
        result = loader.load_file(test_file)
        
        assert result.success
        assert result.dataframe is not None
        assert len(result.dataframe) > 0
        
    def test_database_connection(self):
        """测试数据库连接功能"""
        # 使用测试数据库配置
        config = {
            "db_type": "sqlite",
            "database": ":memory:"
        }
        
        loader = ExternalDataLoader()
        connection = loader.connect_to_database(config)
        
        assert connection is not None
        assert connection.test_connection()

2. AI Agent集成测试

# tests/integration/test_ai_agents.py
from unittest.mock import patch
from data_formulator.agents import AgentManager

class TestAIAgents:
    @patch('data_formulator.agents.LLMClient.generate_response')
    def test_sql_generation_agent(self, mock_llm):
        """测试SQL生成Agent的完整工作流"""
        # 设置Mock响应
        mock_llm.return_value = {
            "sql": "SELECT category, SUM(sales) FROM sales_data GROUP BY category",
            "explanation": "按类别分组计算销售总额"
        }
        
        agent = AgentManager.get_agent('sql_data_transform')
        test_data = [{"category": "A", "sales": 100}, {"category": "B", "sales": 200}]
        
        result = agent.process(test_data, "按类别汇总销售额")
        
        assert result.success
        assert "SELECT" in result.generated_code
        assert result.explanation is not None

3. 端到端用户工作流测试

# tests/e2e/test_user_workflow.py
import time
from playwright.sync_api import expect

def test_complete_visualization_workflow(page):
    """完整的可视化创建工作流测试"""
    # 1. 打开应用
    page.goto("http://localhost:5000")
    
    # 2. 上传测试数据
    page.get_by_label("上传数据").click()
    with page.expect_file_chooser() as fc_info:
        page.get_by_text("选择文件").click()
    file_chooser = fc_info.value
    file_chooser.set_files("tests/fixtures/sample_data.csv")
    
    # 3. 配置可视化
    page.get_by_text("销售额").drag_to(page.get_by_text("Y轴"))
    page.get_by_text("日期").drag_to(page.get_by_text("X轴"))
    
    # 4. 使用AI生成衍生字段
    page.get_by_placeholder("输入衍生字段...").fill("月度增长率")
    page.get_by_text("Formulate").click()
    
    # 5. 验证结果
    expect(page.get_by_text("可视化生成成功")).to_be_visible()
    expect(page.locator(".vega-chart")).to_be_visible()

CI/CD流水线配置

GitHub Actions工作流配置

# .github/workflows/ci-cd.yml
name: Data Formulator CI/CD

on:
  push:
    branches: [ main, develop ]
  pull_request:
    branches: [ main ]

jobs:
  test:
    runs-on: ubuntu-latest
    strategy:
      matrix:
        python-version: ['3.9', '3.10', '3.11']
        node-version: ['18.x', '20.x']

    services:
      postgres:
        image: postgres:13
        env:
          POSTGRES_USER: testuser
          POSTGRES_PASSWORD: testpass
          POSTGRES_DB: testdb
        options: >-
          --health-cmd pg_isready
          --health-interval 10s
          --health-timeout 5s
          --health-retries 5

    steps:
    - uses: actions/checkout@v4
    
    - name: Setup Python
      uses: actions/setup-python@v4
      with:
        python-version: ${{ matrix.python-version }}
    
    - name: Setup Node.js
      uses: actions/setup-node@v4
      with:
        node-version: ${{ matrix.node-version }}
        cache: 'yarn'
    
    - name: Install backend dependencies
      run: |
        python -m pip install --upgrade pip
        pip install -r requirements.txt
        pip install pytest pytest-cov pytest-playwright
    
    - name: Install frontend dependencies
      run: yarn install
    
    - name: Run backend tests
      run: |
        python -m pytest tests/unit/backend/ tests/integration/ --cov=py-src/data_formulator --cov-report=xml
    
    - name: Run frontend tests
      run: yarn test --coverage
    
    - name: Run E2E tests
      run: |
        playwright install
        python -m pytest tests/e2e/ --headed
    
    - name: Upload coverage reports
      uses: codecov/codecov-action@v3
      with:
        file: ./coverage.xml
        flags: unittests

  build-and-deploy:
    needs: test
    runs-on: ubuntu-latest
    if: github.ref == 'refs/heads/main'
    
    steps:
    - uses: actions/checkout@v4
    
    - name: Setup Python
      uses: actions/setup-python@v4
      with:
        python-version: '3.11'
    
    - name: Setup Node.js
      uses: actions/setup-node@v4
      with:
        node-version: '20.x'
    
    - name: Build frontend
      run: yarn build
    
    - name: Build Python package
      run: |
        pip install build
        python -m build
    
    - name: Create release
      uses: softprops/action-gh-release@v1
      with:
        files: dist/*.whl
        generate_release_notes: true

测试数据管理策略

测试数据集设计

# tests/fixtures/test_datasets.yaml
datasets:
  - name: "sales_data"
    description: "模拟销售数据用于测试"
    columns:
      - name: "date"
        type: "date"
        values: "2024-01-01 to 2024-12-31"
      - name: "category"
        type: "string"
        values: ["Electronics", "Clothing", "Food", "Books"]
      - name: "sales"
        type: "float"
        range: [100.0, 10000.0]
      - name: "quantity"
        type: "integer"
        range: [1, 100]
  
  - name: "user_behavior"
    description: "用户行为分析测试数据"
    columns:
      - name: "user_id"
        type: "string"
        pattern: "user_[0-9]{5}"
      - name: "action"
        type: "string"
        values: ["click", "view", "purchase", "logout"]
      - name: "timestamp"
        type: "datetime"
        range: ["2024-01-01 00:00:00", "2024-01-31 23:59:59"]

Mock服务配置

# tests/conftest.py
import pytest
from unittest.mock import Mock, patch
from data_formulator import create_app

@pytest.fixture
def mock_llm_client():
    """创建Mock的LLM客户端"""
    with patch('data_formulator.agents.LLMClient') as mock:
        mock_instance = Mock()
        mock.return_value = mock_instance
        
        # 设置默认响应
        mock_instance.generate_response.return_value = {
            "sql": "SELECT * FROM test_data LIMIT 10",
            "explanation": "测试查询",
            "success": True
        }
        
        yield mock_instance

@pytest.fixture
def test_app(mock_llm_client):
    """创建测试用的Flask应用"""
    app = create_app({
        'TESTING': True,
        'SQLALCHEMY_DATABASE_URI': 'sqlite:///:memory:',
        'LLM_PROVIDER': 'mock'
    })
    
    yield app

@pytest.fixture
def client(test_app):
    """测试客户端"""
    with test_app.test_client() as client:
        yield client

性能测试与监控

负载测试方案

# tests/performance/test_load_performance.py
import locust
from locust import HttpUser, task, between

class DataFormulatorUser(HttpUser):
    wait_time = between(1, 5)
    
    @task(3)
    def test_data_loading(self):
        """测试数据加载性能"""
        files = {'file': ('test_data.csv', open('tests/fixtures/sample_data.csv', 'rb'))}
        self.client.post("/api/upload", files=files)
    
    @task(5)
    def test_visualization_generation(self):
        """测试可视化生成性能"""
        payload = {
            "data": [{"x": i, "y": i*2} for i in range(100)],
            "encoding": {"x": "x", "y": "y"},
            "chart_type": "line"
        }
        self.client.post("/api/generate-chart", json=payload)
    
    @task(2)
    def test_ai_agent_processing(self):
        """测试AI Agent处理性能"""
        payload = {
            "data": [{"category": "A", "value": 100}],
            "prompt": "计算每个类别的总和"
        }
        self.client.post("/api/ai/process", json=payload)

性能指标监控

指标目标值监控频率告警阈值
API响应时间<200ms实时>500ms
数据加载时间<1s每次请求>3s
AI处理时间<5s每次请求>10s
内存使用<512MB每分钟>1GB
并发用户数50+实时<10

测试环境管理

多环境配置策略

# config/test-environment.yaml
environments:
  local:
    database: sqlite:///test.db
    llm_provider: mock
    features:
      - testing
      - development
  
  ci:
    database: postgresql://testuser:testpass@localhost:5432/testdb
    llm_provider: mock
    features:
      - testing
      - ci
  
  staging:
    database: ${STAGING_DB_URL}
    llm_provider: openai
    model: gpt-3.5-turbo
    features:
      - staging
      - pre-production

总结与最佳实践

通过本文的完整测试方案,你可以为Data Formulator构建强大的质量保障体系:

关键收获

  1. 分层测试策略:单元测试覆盖核心逻辑,集成测试验证组件协作,端到端测试确保用户体验
  2. Mock智能策略:合理使用Mock替代外部依赖,提高测试稳定性和速度
  3. 数据驱动测试:使用多样化的测试数据集覆盖各种边界情况
  4. 性能监控:建立完整的性能基准和监控体系

实施路线图

mermaid

后续优化方向

  • 测试数据生成自动化:开发智能测试数据生成工具
  • AI测试增强:针对LLM响应的多样性设计更智能的测试策略
  • 安全测试集成:加入安全扫描和漏洞检测
  • 跨浏览器测试:确保前端在各种浏览器环境下的兼容性

通过这套完整的测试体系,Data Formulator项目可以确保在快速迭代的同时保持高质量的代码标准,为用户提供稳定可靠的数据可视化体验。

【免费下载链接】data-formulator 🪄 Create rich visualizations with AI 【免费下载链接】data-formulator 项目地址: https://gitcode.com/GitHub_Trending/da/data-formulator

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值