Transformer模型在图像生成中的应用:annotated-transformer扩展
引言
你是否在使用Transformer处理图像时遇到过序列长度与分辨率的矛盾?或者困惑于如何将文本Transformer改造为图像生成模型?本文将系统介绍如何基于annotated-transformer项目构建图像生成能力,解决从文本Transformer到视觉生成模型的关键技术挑战。读完本文后,你将能够:
- 掌握Transformer模型从NLP到CV领域的迁移适配技术
- 实现图像生成所需的空间位置编码与卷积-注意力混合架构
- 解决高分辨率图像生成中的内存与计算效率问题
- 构建完整的文本引导图像生成工作流
Transformer视觉扩展的核心挑战
NLP与CV领域差异对比
| 技术维度 | 自然语言处理特性 | 计算机视觉特性 | 转换关键点 |
|---|---|---|---|
| 输入表示 | 离散符号序列(单词ID) | 连续像素矩阵(RGB值) | 图像分块与向量化 |
| 位置信息 | 一维序列位置 | 二维空间坐标 | 2D位置编码设计 |
| 局部相关性 | 较弱(长距离依赖为主) | 极强(局部特征重要) | 卷积-注意力混合架构 |
| 数据维度 | 1D序列(长度N) | 3D张量(H×W×C) | 序列重塑与维度转换 |
| 分辨率需求 | 低(通常<512 tokens) | 高(512×512至4096×4096) | 分层生成与内存优化 |
annotated-transformer的视觉改造点
通过分析项目源代码,需重点改造以下模块以支持图像生成:
# 原始NLP位置编码(仅支持1D序列)
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model) # 1D位置编码
position = torch.arange(0, max_len).unsqueeze(1)
# ...
# 多头注意力机制(需适应图像分块序列)
class MultiHeadedAttention(nn.Module):
def forward(self, query, key, value, mask=None):
# ...
query, key, value = [
lin(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for lin, x in zip(self.linears, (query, key, value))
]
# ...
图像生成Transformer架构设计
2D位置编码实现
原始annotated-transformer使用正弦函数实现1D位置编码,扩展到图像需要2D空间位置编码:
class SpatialPositionalEncoding(nn.Module):
"实现2D空间位置编码,适配图像生成任务"
def __init__(self, d_model, dropout, max_h=256, max_w=256):
super(SpatialPositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# 计算2D位置编码(分离高度和宽度维度)
pe_h = torch.zeros(max_h, d_model//2) # 高度编码占一半维度
pe_w = torch.zeros(max_w, d_model//2) # 宽度编码占一半维度
position_h = torch.arange(0, max_h).unsqueeze(1)
position_w = torch.arange(0, max_w).unsqueeze(1)
# 高度方向位置编码
div_term_h = torch.exp(
torch.arange(0, d_model//2, 2) * -(math.log(10000.0) / (d_model//2))
)
pe_h[:, 0::2] = torch.sin(position_h * div_term_h)
pe_h[:, 1::2] = torch.cos(position_h * div_term_h)
# 宽度方向位置编码
div_term_w = torch.exp(
torch.arange(0, d_model//2, 2) * -(math.log(10000.0) / (d_model//2))
)
pe_w[:, 0::2] = torch.sin(position_w * div_term_w)
pe_w[:, 1::2] = torch.cos(position_w * div_term_w)
# 注册为非学习参数
self.register_buffer('pe_h', pe_h)
self.register_buffer('pe_w', pe_w)
def forward(self, x, h, w):
"""
Args:
x: 输入特征 (batch_size, seq_len, d_model)
h: 图像高度
w: 图像宽度
"""
# 生成批次内每个位置的2D编码
batch_size = x.size(0)
# 扩展为(batch_size, h, w, d_model//2)
pe_h = self.pe_h[:h].unsqueeze(0).unsqueeze(2).repeat(batch_size, 1, w, 1)
pe_w = self.pe_w[:w].unsqueeze(0).unsqueeze(1).repeat(batch_size, h, 1, 1)
# 拼接高度和宽度编码 (batch_size, h, w, d_model)
pe = torch.cat([pe_h, pe_w], dim=-1)
# 重塑为序列形式 (batch_size, h*w, d_model)
pe = pe.view(batch_size, h*w, -1)
# 添加位置编码并应用dropout
x = x + pe
return self.dropout(x)
图像分块嵌入模块
将图像转换为Transformer可处理的序列形式:
class ImagePatchEmbedding(nn.Module):
"将图像分割为非重叠块并进行嵌入"
def __init__(self, patch_size=16, in_channels=3, embed_dim=768):
super(ImagePatchEmbedding, self).__init__()
self.patch_size = patch_size
self.proj = nn.Conv2d(
in_channels, embed_dim,
kernel_size=patch_size,
stride=patch_size
)
def forward(self, x):
"""
Args:
x: 输入图像 (batch_size, channels, height, width)
Returns:
patch_embeddings: 分块嵌入 (batch_size, num_patches, embed_dim)
h: 分块后的高度
w: 分块后的宽度
"""
# 卷积操作实现分块嵌入
x = self.proj(x) # (batch_size, embed_dim, h, w)
h, w = x.shape[2], x.shape[3]
# 转换为序列形式
x = x.flatten(2).transpose(1, 2) # (batch_size, h*w, embed_dim)
return x, h, w
混合视觉Transformer架构
卷积-注意力混合编码器
解决纯Transformer在局部特征提取上的低效问题:
class ConvAttentionEncoderLayer(nn.Module):
"融合卷积与注意力机制的编码层"
def __init__(self, size, self_attn, feed_forward, conv_layer, dropout):
super(ConvAttentionEncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.conv = conv_layer
self.sublayer = clones(SublayerConnection(size, dropout), 3)
self.size = size
def forward(self, x, mask, h, w):
"""
Args:
x: 输入特征 (batch_size, seq_len, d_model)
mask: 注意力掩码
h: 分块高度
w: 分块宽度
"""
# 注意力子层
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
# 卷积子层(需要先恢复空间维度)
batch_size, seq_len, d_model = x.shape
x = x.transpose(1, 2).view(batch_size, d_model, h, w) # (B, C, H, W)
x = self.conv(x) # 卷积处理
x = x.flatten(2).transpose(1, 2) # 转回序列形式
# 前馈网络子层
x = self.sublayer[2](x, self.feed_forward)
return x
# 卷积子层实现
class ConvLayer(nn.Module):
def __init__(self, d_model, kernel_size=3, dropout=0.1):
super(ConvLayer, self).__init__()
self.norm = LayerNorm(d_model)
self.conv = nn.Conv2d(
d_model, d_model * 2,
kernel_size=kernel_size,
padding=kernel_size//2
)
self.gelu = nn.GELU()
self.proj = nn.Conv2d(d_model * 2, d_model, kernel_size=1)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.norm(x)
x = self.conv(x)
x = self.gelu(x)
x = self.proj(x)
return x + self.dropout(x) # 残差连接
解码器输出图像重建
将Transformer输出序列转换回图像格式:
class ImageReconstructionHead(nn.Module):
"将Transformer输出转换为图像"
def __init__(self, embed_dim, patch_size, out_channels=3):
super(ImageReconstructionHead, self).__init__()
self.patch_size = patch_size
self.proj = nn.Linear(embed_dim, patch_size * patch_size * out_channels)
def forward(self, x, h, w):
"""
Args:
x: Transformer输出 (batch_size, num_patches, embed_dim)
h: 分块高度
w: 分块宽度
Returns:
image: 重建图像 (batch_size, out_channels, height, width)
"""
batch_size = x.shape[0]
# 投影到 patch 像素空间
x = self.proj(x) # (batch_size, num_patches, patch_size^2 * out_channels)
# 重塑为图像格式
x = x.transpose(1, 2).view(
batch_size, -1, h, w
) # (batch_size, patch_size^2 * out_channels, h, w)
# 像素洗牌操作恢复高分辨率
x = nn.PixelShuffle(self.patch_size)(x) # (batch_size, out_channels, h*patch_size, w*patch_size)
return x
图像生成Transformer完整实现
模型构建流程
def make_image_generator_model(
patch_size=16,
in_channels=3,
out_channels=3,
N=12,
d_model=768,
d_ff=3072,
h=12,
dropout=0.1
):
"构建图像生成Transformer模型"
c = copy.deepcopy
# 注意力与前馈网络模块
attn = MultiHeadedAttention(h, d_model)
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
conv = ConvLayer(d_model)
# 编码器与解码器层
encoder_layer = ConvAttentionEncoderLayer(
d_model, c(attn), c(ff), c(conv), dropout
)
decoder_layer = DecoderLayer(
d_model, c(attn), c(attn), c(ff), dropout
)
# 位置编码
position = SpatialPositionalEncoding(d_model, dropout)
# 图像分块嵌入与重建头
patch_embed = ImagePatchEmbedding(patch_size, in_channels, d_model)
recon_head = ImageReconstructionHead(d_model, patch_size, out_channels)
# 构建完整模型
model = nn.ModuleDict({
'patch_embed': patch_embed,
'pos_encoder': position,
'encoder': Encoder(encoder_layer, N),
'decoder': Decoder(decoder_layer, N),
'generator': recon_head
})
# 参数初始化
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return model
前向传播流程
def image_generator_forward(model, src, tgt, src_mask=None, tgt_mask=None):
"""图像生成模型前向传播"""
# 源图像分块嵌入
src_embed, src_h, src_w = model['patch_embed'](src)
src_embed = model['pos_encoder'](src_embed, src_h, src_w)
# 目标图像分块嵌入(用于条件生成)
tgt_embed, tgt_h, tgt_w = model['patch_embed'](tgt)
tgt_embed = model['pos_encoder'](tgt_embed, tgt_h, tgt_w)
# 编码器-解码器前向传播
memory = model['encoder'](src_embed, src_mask)
output = model['decoder'](tgt_embed, memory, src_mask, tgt_mask)
# 图像重建
generated_image = model['generator'](output, tgt_h, tgt_w)
return generated_image
高分辨率生成优化策略
内存优化技术
图像生成面临比NLP更严峻的内存挑战,可应用以下优化:
def optimized_image_generation(model, src, tgt_size=(512, 512), batch_size=1):
"""分阶段高分辨率图像生成"""
# 初始低分辨率生成
low_res = (tgt_size[0]//4, tgt_size[1]//4)
low_res_tgt = torch.randn(batch_size, 3, *low_res, device=src.device)
# 阶段1:生成低分辨率图像
with torch.cuda.amp.autocast(): # 混合精度
low_res_output = image_generator_forward(model, src, low_res_tgt)
# 阶段2:上采样并细化
mid_res = (tgt_size[0]//2, tgt_size[1]//2)
mid_res_tgt = nn.Upsample(size=mid_res, mode='bilinear')(low_res_output)
with torch.cuda.amp.autocast():
mid_res_output = image_generator_forward(model, src, mid_res_tgt)
# 阶段3:最终高分辨率生成
high_res_tgt = nn.Upsample(size=tgt_size, mode='bilinear')(mid_res_output)
with torch.cuda.amp.autocast(), torch.utils.checkpoint.checkpoint_sequential(
model, segments=4
): # 梯度检查点
high_res_output = image_generator_forward(model, src, high_res_tgt)
return high_res_output
注意力优化对比
| 优化技术 | 内存占用减少 | 计算速度影响 | 实现复杂度 |
|---|---|---|---|
| 分块注意力 | 60-70% | 降低15-20% | 中等 |
| 混合精度训练 | 40-50% | 提升20-30% | 简单 |
| 梯度检查点 | 30-40% | 降低20% | 中等 |
| 分阶段生成 | 70-80% | 增加50-100% | 复杂 |
应用示例与工作流
文本引导图像生成流程
代码示例
def text_to_image_generation(text_encoder, image_generator, text, target_size=(512, 512)):
"""文本引导的图像生成"""
# 文本编码
with torch.no_grad():
text_feat = text_encoder(text).unsqueeze(0) # 添加批次维度
# 扩展为图像生成器所需的特征图格式
text_feat = text_feat.view(1, -1, 1, 1)
text_feat = text_feat.repeat(1, 1, target_size[0]//16, target_size[1]//16)
text_feat = text_feat.flatten(2).transpose(1, 2) # 转为序列格式
# 应用位置编码
text_feat = image_generator['pos_encoder'](text_feat, target_size[0]//16, target_size[1]//16)
# 生成初始噪声
noise = torch.randn(1, 3, target_size[0]//16, target_size[1]//16, device=text_feat.device)
noise = noise.flatten(2).transpose(1, 2)
# 解码器生成图像特征
memory = image_generator['encoder'](text_feat, None)
output = image_generator['decoder'](noise, memory, None, subsequent_mask(noise.size(1)))
# 图像重建
generated_image = image_generator['generator'](output, target_size[0]//16, target_size[1]//16)
return generated_image
结论与扩展方向
通过本文介绍的方法,我们成功将基于文本的annotated-transformer扩展为图像生成模型,核心贡献包括:
- 设计了空间位置编码与图像分块嵌入,解决视觉维度适配问题
- 提出卷积-注意力混合架构,平衡局部与全局特征学习
- 实现分阶段生成策略,支持高分辨率图像输出
未来可探索的扩展方向:
- 引入交叉注意力机制,实现文本-图像跨模态生成
- 结合扩散模型(Diffusion),提升生成质量与多样性
- 探索3D位置编码,将模型扩展到视频生成领域
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考



