AI Toolkit高可用:集群部署与负载均衡
概述
AI Toolkit是一个功能强大的扩散模型训练套件,支持多种最新的图像和视频模型。随着业务规模的增长,单机部署往往无法满足高并发、高可用的需求。本文将详细介绍如何将AI Toolkit部署为高可用集群,并实现负载均衡,确保系统稳定性和性能。
架构设计
集群架构图
核心组件说明
| 组件 | 作用 | 推荐技术栈 |
|---|---|---|
| 负载均衡 | 请求分发,故障转移 | Nginx, Traefik, HAProxy |
| 应用节点 | AI Toolkit实例运行 | Docker, Kubernetes |
| 共享存储 | 模型文件、数据集共享 | NFS, Ceph, MinIO |
| 数据库 | 作业状态、配置存储 | PostgreSQL, Redis |
| 监控系统 | 集群状态监控 | Prometheus, Grafana |
环境准备
硬件要求
# 每个节点最低配置
CPU: 8核心以上
内存: 32GB以上
GPU: NVIDIA GPU with 24GB+ VRAM (训练节点)
存储: 1TB+ SSD (推荐NVMe)
网络: 10Gbps+ 网卡
软件依赖
# 所有节点都需要安装
sudo apt update && sudo apt install -y \
docker.io \
docker-compose \
nfs-common \
nvidia-container-toolkit
Docker集群部署
1. 准备Docker Compose配置
创建 docker-compose-cluster.yml:
version: '3.8'
services:
# 负载均衡器
loadbalancer:
image: nginx:alpine
ports:
- "80:80"
- "443:443"
volumes:
- ./nginx.conf:/etc/nginx/nginx.conf
- ./ssl:/etc/nginx/ssl
networks:
- ai-cluster
# AI Toolkit节点1
ai-node1:
image: ostris/aitoolkit:latest
deploy:
replicas: 1
environment:
- AI_TOOLKIT_AUTH=${AI_TOOLKIT_AUTH}
- NODE_ENV=production
- DATABASE_URL=postgresql://user:pass@db:5432/aitoolkit
- SHARED_STORAGE=/mnt/nfs
volumes:
- nfs-share:/mnt/nfs
- ./config-node1:/app/config
depends_on:
- db
networks:
- ai-cluster
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
# AI Toolkit节点2
ai-node2:
image: ostris/aitoolkit:latest
environment:
- AI_TOOLKIT_AUTH=${AI_TOOLKIT_AUTH}
- NODE_ENV=production
- DATABASE_URL=postgresql://user:pass@db:5432/aitoolkit
- SHARED_STORAGE=/mnt/nfs
volumes:
- nfs-share:/mnt/nfs
- ./config-node2:/app/config
depends_on:
- db
networks:
- ai-cluster
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
# 数据库
db:
image: postgres:15
environment:
- POSTGRES_DB=aitoolkit
- POSTGRES_USER=user
- POSTGRES_PASSWORD=pass
volumes:
- postgres-data:/var/lib/postgresql/data
networks:
- ai-cluster
volumes:
nfs-share:
driver: local
driver_opts:
type: nfs
o: addr=${NFS_SERVER},rw
device: ":${NFS_PATH}"
postgres-data:
networks:
ai-cluster:
driver: bridge
2. Nginx负载均衡配置
创建 nginx.conf:
events {
worker_connections 1024;
}
http {
upstream ai_toolkit_cluster {
# 负载均衡策略
least_conn; # 最少连接数
# AI Toolkit节点
server ai-node1:8675;
server ai-node2:8675;
# 健康检查
check interval=3000 rise=2 fall=5 timeout=1000;
}
server {
listen 80;
server_name your-domain.com;
# 重定向到HTTPS
return 301 https://$server_name$request_uri;
}
server {
listen 443 ssl http2;
server_name your-domain.com;
ssl_certificate /etc/nginx/ssl/cert.pem;
ssl_certificate_key /etc/nginx/ssl/key.pem;
# 代理设置
location / {
proxy_pass http://ai_toolkit_cluster;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
# 连接超时设置
proxy_connect_timeout 30s;
proxy_send_timeout 30s;
proxy_read_timeout 30s;
}
# 健康检查端点
location /health {
access_log off;
return 200 "healthy\n";
add_header Content-Type text/plain;
}
}
}
Kubernetes部署方案
1. 创建命名空间和配置
# ai-toolkit-namespace.yaml
apiVersion: v1
kind: Namespace
metadata:
name: ai-toolkit
2. 部署配置映射
# ai-toolkit-configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: ai-toolkit-config
namespace: ai-toolkit
data:
nginx.conf: |
# Nginx配置内容
config.yaml: |
# AI Toolkit配置
3. 部署服务
# ai-toolkit-service.yaml
apiVersion: v1
kind: Service
metadata:
name: ai-toolkit-service
namespace: ai-toolkit
spec:
selector:
app: ai-toolkit
ports:
- protocol: TCP
port: 80
targetPort: 8675
type: LoadBalancer
4. 部署StatefulSet
# ai-toolkit-statefulset.yaml
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: ai-toolkit
namespace: ai-toolkit
spec:
serviceName: "ai-toolkit"
replicas: 3
selector:
matchLabels:
app: ai-toolkit
template:
metadata:
labels:
app: ai-toolkit
spec:
containers:
- name: ai-toolkit
image: ostris/aitoolkit:latest
ports:
- containerPort: 8675
env:
- name: AI_TOOLKIT_AUTH
valueFrom:
secretKeyRef:
name: ai-toolkit-secrets
key: auth-token
- name: DATABASE_URL
value: "postgresql://user:pass@postgres:5432/aitoolkit"
volumeMounts:
- name: config-volume
mountPath: /app/config
- name: nfs-volume
mountPath: /mnt/nfs
resources:
limits:
nvidia.com/gpu: 1
requests:
nvidia.com/gpu: 1
volumes:
- name: config-volume
configMap:
name: ai-toolkit-config
- name: nfs-volume
nfs:
server: nfs-server-ip
path: /exports/ai-toolkit
共享存储配置
NFS服务器配置
# 在存储服务器上
sudo apt install nfs-kernel-server
sudo mkdir -p /exports/ai-toolkit
sudo chown nobody:nogroup /exports/ai-toolkit
sudo chmod 777 /exports/ai-toolkit
# 编辑/etc/exports
echo "/exports/ai-toolkit *(rw,sync,no_subtree_check,no_root_squash)" | sudo tee -a /etc/exports
sudo exportfs -a
sudo systemctl restart nfs-kernel-server
客户端挂载
# 在所有AI节点上
sudo apt install nfs-common
sudo mkdir -p /mnt/nfs
sudo mount -t nfs nfs-server-ip:/exports/ai-toolkit /mnt/nfs
# 自动挂载(/etc/fstab)
echo "nfs-server-ip:/exports/ai-toolkit /mnt/nfs nfs defaults 0 0" | sudo tee -a /etc/fstab
数据库高可用
PostgreSQL集群配置
# postgresql-cluster.yaml
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: postgresql
namespace: ai-toolkit
spec:
serviceName: postgresql
replicas: 3
selector:
matchLabels:
app: postgresql
template:
metadata:
labels:
app: postgresql
spec:
containers:
- name: postgresql
image: postgres:15
env:
- name: POSTGRES_DB
value: "aitoolkit"
- name: POSTGRES_USER
value: "user"
- name: POSTGRES_PASSWORD
valueFrom:
secretKeyRef:
name: postgres-secrets
key: password
ports:
- containerPort: 5432
volumeMounts:
- name: postgres-data
mountPath: /var/lib/postgresql/data
livenessProbe:
exec:
command: ["pg_isready", "-U", "user"]
initialDelaySeconds: 30
periodSeconds: 10
readinessProbe:
exec:
command: ["pg_isready", "-U", "user"]
initialDelaySeconds: 5
periodSeconds: 5
volumeClaimTemplates:
- metadata:
name: postgres-data
spec:
accessModes: [ "ReadWriteOnce" ]
resources:
requests:
storage: 100Gi
监控与告警
Prometheus配置
# prometheus.yaml
global:
scrape_interval: 15s
evaluation_interval: 15s
scrape_configs:
- job_name: 'ai-toolkit'
static_configs:
- targets: ['ai-node1:8675', 'ai-node2:8675', 'ai-node3:8675']
metrics_path: '/metrics'
scrape_interval: 10s
- job_name: 'node-exporter'
static_configs:
- targets: ['node1:9100', 'node2:9100', 'node3:9100']
- job_name: 'cadvisor'
static_configs:
- targets: ['node1:8080', 'node2:8080', 'node3:8080']
Grafana仪表板
创建AI Toolkit监控仪表板,监控以下关键指标:
- GPU使用率(显存、计算)
- 请求响应时间
- 并发连接数
- 作业队列长度
- 系统资源使用率
自动化部署脚本
集群初始化脚本
#!/bin/bash
# cluster-init.sh
set -e
# 环境变量
export CLUSTER_NAME="ai-toolkit-cluster"
export NODE_COUNT=3
export GPU_NODES=2
export NFS_SERVER="192.168.1.100"
export NFS_PATH="/exports/ai-toolkit"
echo "开始部署AI Toolkit集群..."
# 1. 初始化Kubernetes集群
echo "初始化Kubernetes集群..."
kubeadm init --pod-network-cidr=10.244.0.0/16
# 2. 安装网络插件
echo "安装Calico网络插件..."
kubectl apply -f https://docs.projectcalico.org/manifests/calico.yaml
# 3. 部署NFS provisioner
echo "部署NFS存储..."
kubectl apply -f nfs-provisioner.yaml
# 4. 创建命名空间
echo "创建命名空间..."
kubectl apply -f ai-toolkit-namespace.yaml
# 5. 部署数据库
echo "部署PostgreSQL集群..."
kubectl apply -f postgresql-cluster.yaml
# 6. 部署AI Toolkit
echo "部署AI Toolkit..."
kubectl apply -f ai-toolkit-statefulset.yaml
# 7. 部署负载均衡
echo "部署负载均衡器..."
kubectl apply -f loadbalancer.yaml
# 8. 部署监控
echo "部署监控系统..."
kubectl apply -f monitoring.yaml
echo "AI Toolkit集群部署完成!"
故障恢复策略
自动故障转移
# 健康检查配置
livenessProbe:
httpGet:
path: /health
port: 8675
initialDelaySeconds: 30
periodSeconds: 10
failureThreshold: 3
readinessProbe:
httpGet:
path: /health
port: 8675
initialDelaySeconds: 5
periodSeconds: 5
failureThreshold: 1
备份与恢复
# 数据库备份脚本
#!/bin/bash
# backup-database.sh
DATE=$(date +%Y%m%d_%H%M%S)
BACKUP_DIR="/backups/database"
# 备份PostgreSQL
pg_dump -h postgres-service -U user aitoolkit > \
$BACKUP_DIR/aitoolkit_backup_$DATE.sql
# 备份配置文件
tar -czf $BACKUP_DIR/config_backup_$DATE.tar.gz /app/config/
# 保留最近7天备份
find $BACKUP_DIR -name "*.sql" -mtime +7 -delete
find $BACKUP_DIR -name "*.tar.gz" -mtime +7 -delete
性能优化建议
GPU资源优化
# GPU资源分配策略
resources:
limits:
nvidia.com/gpu: 1
memory: "32Gi"
cpu: "8"
requests:
nvidia.com/gpu: 1
memory: "16Gi"
cpu: "4"
网络优化
# 调整内核参数
echo "net.core.rmem_max=26214400" >> /etc/sysctl.conf
echo "net.core.wmem_max=26214400" >> /etc/sysctl.conf
echo "net.ipv4.tcp_rmem=4096 87380 26214400" >> /etc/sysctl.conf
echo "net.ipv4.tcp_wmem=4096 65536 26214400" >> /etc/sysctl.conf
sysctl -p
安全考虑
网络安全策略
# 网络策略
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: ai-toolkit-policy
namespace: ai-toolkit
spec:
podSelector:
matchLabels:
app: ai-toolkit
policyTypes:
- Ingress
- Egress
ingress:
- from:
- podSelector:
matchLabels:
app: loadbalancer
ports:
- protocol: TCP
port: 8675
egress:
- to:
- podSelector:
matchLabels:
app: postgresql
ports:
- protocol: TCP
port: 5432
总结
通过本文介绍的集群部署方案,AI Toolkit可以实现:
- 高可用性:多节点部署,自动故障转移
- 负载均衡:智能请求分发,避免单点过载
- 弹性扩展:根据负载动态调整节点数量
- 数据安全:共享存储和数据库备份机制
- 全面监控:实时监控集群状态和性能指标
这种架构特别适合需要处理大量训练任务的生产环境,能够显著提高系统的稳定性和处理能力。
后续优化方向
- 自动扩缩容:基于GPU使用率自动调整节点数量
- 智能调度:根据模型类型和资源需求智能分配任务
- 多云部署:支持跨云厂商的混合云部署
- 边缘计算:支持边缘节点的模型推理
通过持续优化和改进,AI Toolkit集群能够为企业级AI应用提供稳定可靠的基础设施支持。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考



