Playwright MCP监控系统构建:网站可用性与性能实时检测

Playwright MCP监控系统构建:网站可用性与性能实时检测

【免费下载链接】playwright-mcp Playwright Tools for MCP 【免费下载链接】playwright-mcp 项目地址: https://gitcode.com/gh_mirrors/pl/playwright-mcp

引言:从被动响应到主动监控的范式转变

您是否还在依赖用户反馈发现网站故障?当访问量激增导致页面加载缓慢时,您是否能第一时间察觉?在数字化时代,网站可用性与性能已成为用户体验的核心指标,而传统的被动监控方式往往导致故障发现滞后、用户流失严重。本文将详细介绍如何利用Playwright MCP(Model Context Protocol)构建一套专业的网站监控系统,实现从URL导航到性能指标分析的全流程自动化检测,帮助您将监控响应时间从小时级降至分钟级,提前发现并解决潜在问题。

读完本文,您将获得:

  • 基于Playwright MCP构建分布式监控系统的完整方案
  • 网站可用性检测的核心指标与实现方法
  • 性能瓶颈定位的自动化测试策略
  • 多场景监控脚本的编写与部署技巧
  • 监控告警与数据可视化的整合方案

一、Playwright MCP技术架构与监控优势

1.1 MCP协议与传统监控方案对比

Model Context Protocol(MCP,模型上下文协议)是一种允许大型语言模型(LLM)与外部工具交互的标准化协议。Playwright MCP作为基于该协议的浏览器自动化服务器,通过结构化的可访问性快照(而非像素截图)提供网页交互能力,为网站监控带来革命性变化:

特性传统监控方案Playwright MCP方案
数据采集方式像素截图/Selenium DOM解析可访问性树(Accessibility Tree)结构化数据
资源消耗高(完整渲染+图像传输)低(仅传输DOM语义结构)
检测精度依赖视觉识别,易受样式变化干扰基于语义结构,不受UI变更影响
LLM集成能力无原生支持原生支持,可实现智能异常识别
跨浏览器支持有限(主要依赖Chrome)全面(Chrome/Firefox/WebKit/Edge)
分布式部署复杂(需额外搭建网格)简易(HTTP传输模式支持远程访问)

1.2 系统架构设计

Playwright MCP监控系统采用三层架构设计,实现高可用、可扩展的实时检测能力:

mermaid

核心组件说明:

  • 监控任务调度器:基于 cron 表达式或事件触发检测任务,支持自定义检测频率
  • Playwright MCP集群:部署多节点MCP服务器,支持浏览器类型/版本/地理位置的多样化检测
  • 性能指标采集模块:通过Playwright的性能API获取关键指标,包括首屏加载时间、资源加载效率等
  • 异常检测引擎:基于历史数据建立基线,通过3σ原则识别异常波动
  • 时序数据库:采用InfluxDB/TimescaleDB存储监控指标,支持长期趋势分析

二、环境搭建与核心配置

2.1 快速部署Playwright MCP服务器

Playwright MCP提供多种部署方式,推荐使用Docker容器化部署以确保环境一致性:

# 1. 克隆项目代码
git clone https://gitcode.com/gh_mirrors/pl/playwright-mcp
cd playwright-mcp

# 2. 构建Docker镜像
docker build -t playwright-mcp-monitor .

# 3. 启动MCP服务器(HTTP模式,便于远程访问)
docker run -d \
  --name mcp-monitor-node1 \
  -p 8931:8931 \
  --init \
  playwright-mcp-monitor \
  --port 8931 \
  --browser chromium \
  --headless \
  --allowed-origins "*.example.com;*.yourdomain.com"

2.2 核心配置参数优化

针对监控场景,需特别配置以下关键参数,平衡检测准确性与资源消耗:

// 监控专用配置文件: monitor-config.json
{
  "browser": {
    "browserName": "chromium",
    "launchOptions": {
      "headless": true,
      "args": [
        "--disable-gpu",
        "--disable-dev-shm-usage",  // 解决容器环境内存限制问题
        "--no-sandbox",
        "--disable-extensions"
      ]
    },
    "contextOptions": {
      "viewport": { "width": 1280, "height": 720 },
      "ignoreHTTPSErrors": true  // 允许监控HTTPS站点(含自签名证书)
    }
  },
  "server": {
    "port": 8931,
    "host": "0.0.0.0"  // 允许外部访问
  },
  "network": {
    "allowedOrigins": ["*.example.com", "*.yourdomain.com"],
    "blockedOrigins": ["*.analytics.com", "*.adservice.com"]  // 屏蔽统计/广告资源,加速检测
  },
  "capabilities": ["verify", "tracing"],  // 启用验证和追踪能力
  "outputDir": "/data/monitor-results",
  "imageResponses": "omit"  // 监控场景无需传输图片,节省带宽
}

启动时加载配置文件:

docker run -d \
  --name mcp-monitor-node1 \
  -p 8931:8931 \
  -v $(pwd)/monitor-config.json:/app/config.json \
  -v /data/monitor-results:/data/monitor-results \
  --init \
  playwright-mcp-monitor \
  --config /app/config.json

2.3 多浏览器与设备模拟配置

为确保网站在不同环境下的可用性,可配置多节点监控集群,每个节点负责特定浏览器/设备类型:

# Firefox监控节点
docker run -d \
  --name mcp-monitor-firefox \
  -p 8932:8931 \
  --init \
  playwright-mcp-monitor \
  --port 8931 \
  --browser firefox \
  --headless

# 移动设备模拟节点(iPhone 15)
docker run -d \
  --name mcp-monitor-mobile \
  -p 8933:8931 \
  --init \
  playwright-mcp-monitor \
  --port 8931 \
  --browser chrome \
  --device "iPhone 15" \
  --headless

三、网站可用性监控核心实现

3.1 关键指标定义与检测方法

有效的可用性监控需覆盖从网络连接到功能交互的完整链路,核心指标包括:

指标类别具体指标检测方法阈值建议
连接层DNS解析时间browser_navigate + 网络请求跟踪<100ms
TCP连接建立时间browser_network_requests<200ms
SSL握手时间browser_network_requests<300ms
应用层首字节时间(TTFB)browser_network_requests<600ms
首屏加载时间(FCP)browser_snapshot + 时间戳对比<2s
交互可操作时间(TTI)browser_evaluate + 长任务检测<3.5s
页面稳定性时间(LCP)browser_evaluate + Performance API<2.5s
功能层关键元素可见性browser_verify_element_visible100%可见
表单提交成功率browser_fill_form + 结果验证100%成功
页面跳转完整性browser_navigate + URL验证预期URL匹配

3.2 基础可用性检测脚本

以下示例实现完整的网站可用性检测流程,涵盖页面加载、关键元素验证和基本交互:

/**
 * 网站可用性检测主函数
 * @param {string} targetUrl - 目标检测URL
 * @param {Object} config - 检测配置
 * @returns {Object} 检测结果
 */
async function runAvailabilityCheck(targetUrl, config) {
  const results = {
    timestamp: new Date().toISOString(),
    targetUrl,
    status: "unknown",
    metrics: {},
    errors: []
  };
  
  try {
    // 1. 启动性能追踪
    await mcpClient.sendCommand("browser_start_tracing");
    
    // 2. 导航到目标URL并记录时间
    const startTime = performance.now();
    await mcpClient.sendCommand("browser_navigate", { url: targetUrl });
    const navigationTime = performance.now() - startTime;
    results.metrics.navigationTime = navigationTime;
    
    // 3. 获取网络请求数据
    const networkRequests = await mcpClient.sendCommand("browser_network_requests");
    analyzeNetworkMetrics(networkRequests, results.metrics);
    
    // 4. 验证关键元素可见性
    const criticalElements = config.criticalElements || [
      { role: "button", accessibleName: "登录" },
      { role: "link", accessibleName: "产品列表" },
      { role: "heading", accessibleName: "欢迎使用" }
    ];
    
    for (const element of criticalElements) {
      const isVisible = await mcpClient.sendCommand("browser_verify_element_visible", {
        role: element.role,
        accessibleName: element.accessibleName
      });
      
      if (!isVisible) {
        results.errors.push(`关键元素缺失: ${element.role} "${element.accessibleName}"`);
      }
    }
    
    // 5. 执行简单交互验证
    if (config.testInteraction) {
      await mcpClient.sendCommand("browser_hover", {
        element: "搜索框",
        ref: await findElementRef("searchbox") // 自定义元素定位函数
      });
    }
    
    // 6. 停止追踪并保存结果
    await mcpClient.sendCommand("browser_stop_tracing");
    
    // 7. 判断整体状态
    results.status = results.errors.length === 0 ? "available" : "degraded";
    
  } catch (error) {
    results.status = "unavailable";
    results.errors.push(`致命错误: ${error.message}`);
  } finally {
    // 关闭浏览器上下文
    await mcpClient.sendCommand("browser_close");
  }
  
  return results;
}

3.3 分布式检测与数据聚合

通过多个地理位置和网络环境的检测节点,可获得更全面的可用性评估。实现方案:

  1. 节点发现机制
// 监控节点注册表
const monitorNodes = [
  { id: "node-us", url: "http://us.mcp-monitor.example.com:8931/mcp" },
  { id: "node-eu", url: "http://eu.mcp-monitor.example.com:8931/mcp" },
  { id: "node-cn", url: "http://cn.mcp-monitor.example.com:8931/mcp" }
];

// 并行执行多节点检测
async function runDistributedCheck(targetUrl, config) {
  const checkPromises = monitorNodes.map(node => 
    fetch(`${node.url}/execute`, {
      method: "POST",
      headers: { "Content-Type": "application/json" },
      body: JSON.stringify({
        script: "runAvailabilityCheck",
        params: { targetUrl, config }
      })
    }).then(res => res.json())
      .then(result => ({ ...result, nodeId: node.id }))
  );
  
  // 等待所有节点完成或超时
  const results = await Promise.allSettled(checkPromises);
  
  // 聚合结果
  return {
    globalStatus: calculateGlobalStatus(results),
    regionalResults: results.map(r => ({
      nodeId: r.value?.nodeId,
      status: r.status === "fulfilled" ? r.value.status : "error",
      latency: r.value?.metrics?.navigationTime
    })),
    timestamp: new Date().toISOString()
  };
}
  1. 数据聚合逻辑
function calculateGlobalStatus(results) {
  const successfulNodes = results.filter(
    r => r.status === "fulfilled" && r.value.status === "available"
  ).length;
  
  const totalNodes = results.length;
  
  // 80%以上节点可用则判定为全局可用
  return (successfulNodes / totalNodes) >= 0.8 ? "available" : "degraded";
}

四、性能瓶颈定位与优化

4.1 性能指标采集与分析

Playwright MCP提供丰富的性能检测工具,通过结合网络请求数据和页面渲染指标,精确定位性能瓶颈:

// 网络性能指标分析函数
function analyzeNetworkMetrics(networkRequests, metrics) {
  // 过滤主文档请求
  const mainRequest = networkRequests.find(r => r.resourceType === "document");
  
  if (!mainRequest) return;
  
  // 计算各阶段时间
  metrics.dnsTime = mainRequest.timing.dnsEnd - mainRequest.timing.dnsStart;
  metrics.tcpTime = mainRequest.timing.connectEnd - mainRequest.timing.connectStart;
  metrics.sslTime = mainRequest.timing.sslEnd - mainRequest.timing.sslStart;
  metrics.ttfb = mainRequest.timing.responseStart - mainRequest.timing.requestStart;
  
  // 计算资源加载统计
  const resourceTypes = {};
  networkRequests.forEach(req => {
    if (!resourceTypes[req.resourceType]) {
      resourceTypes[req.resourceType] = { count: 0, size: 0, time: 0 };
    }
    resourceTypes[req.resourceType].count++;
    resourceTypes[req.resourceType].size += req.size;
    resourceTypes[req.resourceType].time += (req.timing.responseEnd - req.timing.requestStart);
  });
  
  metrics.resourceStats = resourceTypes;
  
  // 识别慢请求
  metrics.slowRequests = networkRequests
    .filter(req => (req.timing.responseEnd - req.timing.requestStart) > 1000)
    .map(req => ({
      url: req.url,
      duration: req.timing.responseEnd - req.timing.requestStart,
      resourceType: req.resourceType
    }));
}

4.2 关键渲染路径分析

通过跟踪页面渲染关键阶段,识别阻塞渲染的资源:

async function analyzeRenderingPerformance(mcpClient, metrics) {
  // 使用evaluate执行自定义性能分析脚本
  const perfData = await mcpClient.sendCommand("browser_evaluate", {
    function: `() => {
      const perfEntries = performance.getEntriesByType('navigation')[0];
      return {
        loadTime: perfEntries.loadEventEnd - perfEntries.startTime,
        domContentLoaded: perfEntries.domContentLoadedEventEnd - perfEntries.startTime,
        firstContentfulPaint: performance.getEntriesByName('first-contentful-paint')[0]?.startTime || 0,
        largestContentfulPaint: performance.getEntriesByName('largest-contentful-paint')[0]?.startTime || 0,
        layoutShift: performance.getEntriesByName('layout-shift')[0]?.value || 0
      };
    }`
  });
  
  // 整合渲染指标
  metrics.loadTime = perfData.loadTime;
  metrics.domContentLoaded = perfData.domContentLoaded;
  metrics.fcp = perfData.firstContentfulPaint;
  metrics.lcp = perfData.largestContentfulPaint;
  metrics.cls = perfData.layoutShift;
  
  // 评估性能得分
  metrics.performanceScore = calculatePerformanceScore(metrics);
}

// 基于Core Web Vitals计算性能得分
function calculatePerformanceScore(metrics) {
  let score = 0;
  
  // FCP评分 (0-400ms: 100分, >2500ms: 0分)
  score += Math.max(0, Math.min(100, 100 - (metrics.fcp - 400) / 21));
  
  // LCP评分 (0-2500ms: 100分, >4500ms: 0分)
  score += Math.max(0, Math.min(100, 100 - (metrics.lcp - 2500) / 20));
  
  // CLS评分 (<0.1: 100分, >0.25: 0分)
  score += Math.max(0, Math.min(100, 100 - (metrics.cls - 0.1) / 0.0015));
  
  return Math.round(score / 3); // 平均得分
}

4.3 性能优化建议生成

基于检测数据,Playwright MCP可结合LLM能力提供智能化优化建议:

async function generateOptimizationRecommendations(metrics) {
  // 准备提示词
  const prompt = `作为Web性能优化专家,基于以下性能数据提供具体优化建议:
  
  性能得分: ${metrics.performanceScore}/100
  
  关键指标:
  - FCP: ${metrics.fcp}ms
  - LCP: ${metrics.lcp}ms
  - CLS: ${metrics.cls}
  
  资源统计:
  ${JSON.stringify(metrics.resourceStats, null, 2)}
  
  慢请求:
  ${metrics.slowRequests.map(r => 
    `${r.url} (${r.duration}ms, ${r.resourceType})`
  ).join('\n')}
  
  请按优先级排序建议,每项包含具体优化方法和预期效果。`;
  
  // 调用LLM生成建议(实际实现需集成具体LLM API)
  const recommendations = await llmClient.generate(prompt);
  
  return recommendations;
}

五、高级监控场景实现

5.1 表单提交与用户流程监控

对于电商网站、支付系统等关键业务,需监控完整用户流程的可用性:

async function monitorCheckoutFlow(mcpClient) {
  const results = {
    steps: [],
    success: false,
    errors: []
  };
  
  try {
    // 步骤1: 导航到产品页面
    let stepResult = await executeStep(mcpClient, "导航到产品页", async () => {
      await mcpClient.sendCommand("browser_navigate", { url: "https://example.com/products" });
      return await mcpClient.sendCommand("browser_verify_element_visible", {
        role: "heading",
        accessibleName: "产品列表"
      });
    });
    results.steps.push(stepResult);
    
    // 步骤2: 选择产品
    stepResult = await executeStep(mcpClient, "选择产品", async () => {
      const productRef = await findElementRef("product-card-123");
      await mcpClient.sendCommand("browser_click", {
        element: "产品卡片",
        ref: productRef
      });
      return await mcpClient.sendCommand("browser_verify_element_visible", {
        role: "button",
        accessibleName: "加入购物车"
      });
    });
    results.steps.push(stepResult);
    
    // 步骤3: 加入购物车
    stepResult = await executeStep(mcpClient, "加入购物车", async () => {
      await mcpClient.sendCommand("browser_click", {
        element: "加入购物车按钮",
        ref: await findElementRef("add-to-cart")
      });
      return await mcpClient.sendCommand("browser_verify_text_visible", {
        text: "商品已加入购物车"
      });
    });
    results.steps.push(stepResult);
    
    // 步骤4: 填写表单
    stepResult = await executeStep(mcpClient, "填写结账表单", async () => {
      return await mcpClient.sendCommand("browser_fill_form", {
        fields: [
          {
            element: "姓名输入框",
            ref: await findElementRef("checkout-name"),
            text: "测试用户"
          },
          {
            element: "邮箱输入框",
            ref: await findElementRef("checkout-email"),
            text: "test@example.com"
          },
          {
            element: "地址输入框",
            ref: await findElementRef("checkout-address"),
            text: "测试地址"
          }
        ]
      });
    });
    results.steps.push(stepResult);
    
    // 所有步骤成功完成
    results.success = true;
    
  } catch (error) {
    results.errors.push(error.message);
  }
  
  return results;
}

// 步骤执行辅助函数
async function executeStep(mcpClient, stepName, action) {
  const stepResult = {
    name: stepName,
    startTime: new Date().toISOString(),
    duration: 0,
    success: false
  };
  
  try {
    const start = performance.now();
    const stepSuccess = await action();
    stepResult.duration = performance.now() - start;
    stepResult.success = stepSuccess;
    stepResult.endTime = new Date().toISOString();
  } catch (error) {
    stepResult.error = error.message;
    stepResult.endTime = new Date().toISOString();
  }
  
  return stepResult;
}

5.2 动态内容与SPA应用监控

针对现代SPA应用,需处理动态内容加载和客户端路由:

async function monitorSpaApplication(mcpClient, targetUrl, routes) {
  const results = {
    baseUrl: targetUrl,
    routes: [],
    errors: []
  };
  
  try {
    // 初始导航
    await mcpClient.sendCommand("browser_navigate", { url: targetUrl });
    
    // 监控每个路由
    for (const route of routes) {
      const routeResult = {
        path: route.path,
        loadTime: 0,
        fcp: 0,
        errors: []
      };
      
      try {
        // 使用客户端路由导航
        const start = performance.now();
        
        await mcpClient.sendCommand("browser_click", {
          element: route.linkText,
          ref: await findElementRef(route.linkRef)
        });
        
        // 等待路由完成(SPA特有的等待策略)
        await mcpClient.sendCommand("browser_wait_for", {
          text: route.indicatorText
        });
        
        routeResult.loadTime = performance.now() - start;
        
        // 采集性能指标
        const perfData = await mcpClient.sendCommand("browser_evaluate", {
          function: `() => ({
            fcp: performance.getEntriesByName('first-contentful-paint')[0]?.startTime || 0,
            lcp: performance.getEntriesByName('largest-contentful-paint')[0]?.startTime || 0
          })`
        });
        
        routeResult.fcp = perfData.fcp;
        
        // 验证关键元素
        const elementVisible = await mcpClient.sendCommand("browser_verify_element_visible", {
          role: route.criticalElement.role,
          accessibleName: route.criticalElement.name
        });
        
        if (!elementVisible) {
          routeResult.errors.push(`关键元素缺失: ${route.criticalElement.name}`);
        }
        
      } catch (error) {
        routeResult.errors.push(error.message);
      }
      
      results.routes.push(routeResult);
    }
    
  } catch (error) {
    results.errors.push(`全局错误: ${error.message}`);
  } finally {
    await mcpClient.sendCommand("browser_close");
  }
  
  return results;
}

// 使用示例
const spaRoutes = [
  {
    path: "/dashboard",
    linkText: "仪表盘",
    linkRef: "nav-dashboard",
    indicatorText: "最近活动",
    criticalElement: {
      role: "table",
      name: "活动列表"
    }
  },
  {
    path: "/profile",
    linkText: "个人资料",
    linkRef: "nav-profile",
    indicatorText: "个人信息",
    criticalElement: {
      role: "textbox",
      name: "电子邮箱"
    }
  }
];

5.3 多地区性能对比监控

通过部署全球节点,分析不同地区的访问性能:

async function runGlobalPerformanceComparison(targetUrl) {
  // 全球监控节点配置
  const regions = [
    { id: "na-west", name: "北美(西海岸)", url: "http://na-west.mcp-monitor.example.com:8931/mcp" },
    { id: "eu-central", name: "欧洲(中部)", url: "http://eu-central.mcp-monitor.example.com:8931/mcp" },
    { id: "ap-southeast", name: "亚太(东南亚)", url: "http://ap-southeast.mcp-monitor.example.com:8931/mcp" },
    { id: "cn-east", name: "中国(东部)", url: "http://cn-east.mcp-monitor.example.com:8931/mcp" }
  ];
  
  // 并行执行区域检测
  const regionPromises = regions.map(region => 
    executeRegionalCheck(region, targetUrl)
  );
  
  const results = await Promise.allSettled(regionPromises);
  
  // 整合结果
  return results.map((result, index) => {
    if (result.status === "fulfilled") {
      return {
        region: regions[index].name,
        ...result.value
      };
    } else {
      return {
        region: regions[index].name,
        status: "error",
        error: result.reason.message
      };
    }
  });
}

// 区域检测执行函数
async function executeRegionalCheck(region, targetUrl) {
  const mcpClient = createMcpClient(region.url); // 创建远程MCP客户端
  
  try {
    // 执行性能检测
    await mcpClient.sendCommand("browser_navigate", { url: targetUrl });
    const networkRequests = await mcpClient.sendCommand("browser_network_requests");
    const perfData = await mcpClient.sendCommand("browser_evaluate", {
      function: `() => {
        const navEntry = performance.getEntriesByType('navigation')[0];
        return {
          fcp: performance.getEntriesByName('first-contentful-paint')[0]?.startTime || 0,
          lcp: performance.getEntriesByName('largest-contentful-paint')[0]?.startTime || 0,
          loadTime: navEntry.loadEventEnd - navEntry.startTime
        };
      }`
    });
    
    // 查找CDN节点信息
    const cdnInfo = networkRequests
      .find(r => r.url.includes("cdn"))?.server || "unknown";
    
    return {
      status: "completed",
      metrics: {
        ...perfData,
        cdn: cdnInfo,
        // 从networkRequests计算其他指标...
      }
    };
    
  } finally {
    await mcpClient.sendCommand("browser_close");
    mcpClient.disconnect();
  }
}

六、监控系统部署与运维

6.1 Kubernetes集群部署

对于企业级监控需求,推荐使用Kubernetes实现弹性伸缩的MCP监控集群:

# mcp-monitor-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: playwright-mcp-monitor
  namespace: monitoring
spec:
  replicas: 3
  selector:
    matchLabels:
      app: mcp-monitor
  template:
    metadata:
      labels:
        app: mcp-monitor
    spec:
      containers:
      - name: mcp-monitor
        image: playwright-mcp-monitor:latest
        ports:
        - containerPort: 8931
        args: ["--port", "8931", "--headless", "--config", "/config/monitor-config.json"]
        volumeMounts:
        - name: config-volume
          mountPath: /config
        - name: results-volume
          mountPath: /data/monitor-results
        resources:
          limits:
            cpu: "1"
            memory: "1Gi"
          requests:
            cpu: "500m"
            memory: "512Mi"
        readinessProbe:
          httpGet:
            path: /health
            port: 8931
          initialDelaySeconds: 10
          periodSeconds: 5
      volumes:
      - name: config-volume
        configMap:
          name: mcp-monitor-config
      - name: results-volume
        persistentVolumeClaim:
          claimName: monitor-results-pvc
---
# 服务配置
apiVersion: v1
kind: Service
metadata:
  name: mcp-monitor-service
  namespace: monitoring
spec:
  selector:
    app: mcp-monitor
  ports:
  - port: 80
    targetPort: 8931
  type: ClusterIP

6.2 监控数据可视化

使用Grafana构建监控仪表盘,直观展示网站性能趋势:

mermaid

mermaid

6.3 告警策略与自动恢复

实现智能告警与自动恢复机制,减少人工干预:

async function processMonitoringResult(result) {
  // 1. 存储结果到时序数据库
  await influxClient.writePoints([
    {
      measurement: 'website_availability',
      tags: {
        url: result.targetUrl,
        region: result.nodeId
      },
      fields: {
        status: result.status === 'available' ? 1 : 0,
        navigationTime: result.metrics.navigationTime,
        errorCount: result.errors.length
      },
      timestamp: result.timestamp
    }
  ]);
  
  // 2. 判断是否触发告警
  if (result.status === 'unavailable' || result.errors.length > 0) {
    // 检查是否已经告警
    const recentAlerts = await checkRecentAlerts(result.targetUrl);
    
    if (recentAlerts.length === 0) {
      // 触发告警
      await triggerAlert({
        url: result.targetUrl,
        status: result.status,
        errors: result.errors,
        metrics: result.metrics,
        severity: calculateSeverity(result)
      });
      
      // 尝试自动恢复
      if (result.status === 'unavailable' && shouldAutoRecover(result)) {
        await attemptAutoRecovery(result.targetUrl);
      }
    }
  } else {
    // 状态恢复正常,清除告警
    await clearAlert(result.targetUrl);
  }
}

// 告警分级函数
function calculateSeverity(result) {
  if (result.status === 'unavailable') return 'critical';
  if (result.errors.length > 0 && result.metrics.performanceScore < 50) return 'high';
  if (result.metrics.performanceScore < 70) return 'medium';
  return 'low';
}

// 自动恢复尝试
async function attemptAutoRecovery(url) {
  // 示例: 调用CDN清除缓存API
  try {
    await fetch('https://cdn-provider.example.com/api/purge', {
      method: 'POST',
      headers: {
        'Authorization': `Bearer ${process.env.CDN_API_KEY}`,
        'Content-Type': 'application/json'
      },
      body: JSON.stringify({ url })
    });
    
    // 记录恢复尝试
    logger.info(`自动恢复尝试: 清除CDN缓存 - ${url}`);
  } catch (error) {
    logger.error(`自动恢复失败: ${error.message}`);
  }
}

七、总结与未来展望

Playwright MCP监控系统通过创新的结构化数据采集方式,解决了传统监控方案资源消耗高、易受UI变更干扰的痛点,为网站可用性与性能监控提供了全新解决方案。本文详细介绍了从环境搭建、核心指标监控到高级场景实现的完整流程,包括:

  1. 基于Playwright MCP构建分布式监控系统的架构设计与部署方法
  2. 覆盖连接层、应用层、功能层的全链路可用性检测方案
  3. 结合网络请求与渲染性能的综合性能分析策略
  4. 多场景监控脚本的编写技巧,包括表单流程、SPA应用和全球性能对比
  5. 企业级部署与运维的最佳实践,含Kubernetes编排与自动恢复机制

未来,随着LLM技术与MCP协议的不断发展,网站监控将向更智能、更主动的方向演进。Playwright MCP监控系统可进一步整合AI异常检测、根因自动分析和修复方案推荐能力,实现从"被动响应"到"主动预防"的终极目标。

建议监控系统实施后持续优化以下方面:

  • 基于实际业务场景扩展监控指标体系
  • 结合用户真实访问数据校准阈值
  • 构建监控数据与业务指标的关联分析
  • 开发自定义告警策略以减少告警疲劳

通过本文介绍的方案,您可以构建一套专业、高效的网站监控系统,为用户提供稳定可靠的访问体验,同时降低运维成本,将更多精力投入到业务创新中。

【免费下载链接】playwright-mcp Playwright Tools for MCP 【免费下载链接】playwright-mcp 项目地址: https://gitcode.com/gh_mirrors/pl/playwright-mcp

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值