AI Engineering Hub数据API:提供数据访问接口

AI Engineering Hub数据API:提供数据访问接口

【免费下载链接】ai-engineering-hub In-depth tutorials on LLMs, RAGs and real-world AI agent applications. 【免费下载链接】ai-engineering-hub 项目地址: https://gitcode.com/GitHub_Trending/ai/ai-engineering-hub

🎯 痛点与承诺

还在为AI项目中的数据访问和集成而烦恼吗?面对分散的数据源、复杂的API调用和繁琐的集成工作,开发者往往需要花费大量时间在数据准备而非核心算法开发上。本文将通过AI Engineering Hub的数据API解决方案,为你提供一套完整、高效的数据访问接口,让你专注于AI模型的核心逻辑开发。

读完本文,你将获得:

  • ✅ 理解AI Engineering Hub数据API的核心架构
  • ✅ 掌握多种数据API的使用方法和最佳实践
  • ✅ 学会如何快速集成外部数据源到AI项目中
  • ✅ 了解性能优化和安全保障策略
  • ✅ 获得完整的代码示例和部署指南

📊 AI Engineering Hub数据API架构概览

AI Engineering Hub采用模块化的数据API架构,支持多种数据源和访问模式:

mermaid

核心组件功能表

组件技术栈主要功能适用场景
RESTful APIFastAPI + Pydantic结构化数据访问文档查询、配置管理
GraphQL APIStrawberry + GraphQL灵活数据查询复杂数据关系查询
WebSocket APIWebSockets + ASGI实时数据推送实时监控、聊天应用
向量数据库Milvus + HuggingFace语义搜索RAG应用、相似性搜索
网页提取Firecrawl + BeautifulSoup网页内容提取知识库构建、数据采集

🚀 快速开始:五分钟搭建数据API

环境准备

# 克隆项目仓库
git clone https://gitcode.com/GitHub_Trending/ai/ai-engineering-hub
cd ai-engineering-hub

# 安装依赖
pip install -r requirements.txt

# 设置环境变量
export GROQ_API_KEY=your_groq_api_key
export FIRECRAWL_API_KEY=your_firecrawl_key

基础数据API示例

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Optional
import os

app = FastAPI(title="AI Engineering Hub Data API")

class DocumentRequest(BaseModel):
    url: str
    extract_schema: Optional[dict] = None
    timeout: int = 30

class VectorSearchRequest(BaseModel):
    query: str
    top_k: int = 5
    collection_name: str

@app.post("/api/extract/document")
async def extract_document_data(request: DocumentRequest):
    """
    从网页文档提取结构化数据
    """
    try:
        from firecrawl import FirecrawlApp
        
        app = FirecrawlApp(api_key=os.getenv("FIRECRAWL_API_KEY"))
        extract_params = {'prompt': '提取页面主要内容'}
        
        if request.extract_schema:
            extract_params['schema'] = request.extract_schema
            
        result = app.extract([request.url], extract_params)
        return {"success": True, "data": result}
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/api/search/vector")
async def vector_semantic_search(request: VectorSearchRequest):
    """
    向量语义搜索接口
    """
    try:
        from rag import EmbedData, MilvusVDB_BQ, Retriever
        
        # 初始化嵌入模型
        embedder = EmbedData()
        query_embedding = embedder.embed_model.get_query_embedding(request.query)
        
        # 搜索向量数据库
        results = await search_milvus(
            query_embedding, 
            request.collection_name, 
            request.top_k
        )
        
        return {"success": True, "results": results}
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

🔧 核心API功能详解

1. 文档处理API

网页内容提取
@app.post("/api/documents/extract")
async def extract_web_content(
    url: str,
    schema: Optional[Dict[str, str]] = None
):
    """
    高级网页内容提取API
    支持自定义schema和智能内容识别
    """
    extraction_params = {
        'prompt': '提取所有重要信息',
        'timeout': 60,
        'waitForSelector': '.main-content'
    }
    
    if schema:
        extraction_params['schema'] = schema
        
    result = firecrawl_app.extract([url], extraction_params)
    return process_extraction_result(result)

def process_extraction_result(data):
    """处理提取结果的标准流程"""
    if isinstance(data['data'], list):
        return {
            "type": "tabular",
            "count": len(data['data']),
            "data": data['data']
        }
    else:
        return {
            "type": "structured",
            "data": data['data']
        }
批量文档处理
@app.post("/api/documents/batch")
async def batch_process_documents(
    urls: List[str],
    operation: str = "extract",
    batch_size: int = 10
):
    """
    批量文档处理API
    支持并发处理多个文档源
    """
    results = []
    for i in range(0, len(urls), batch_size):
        batch = urls[i:i + batch_size]
        batch_results = await process_batch(batch, operation)
        results.extend(batch_results)
    
    return {
        "processed": len(results),
        "successful": sum(1 for r in results if r['success']),
        "results": results
    }

2. 向量搜索API

语义搜索接口
class SemanticSearchRequest(BaseModel):
    query: str
    collection: str = "default"
    top_k: int = 10
    score_threshold: float = 0.7
    filters: Optional[Dict] = None

@app.post("/api/vector/search")
async def semantic_search(request: SemanticSearchRequest):
    """
    高级语义搜索API
    支持过滤、评分阈值和多种搜索模式
    """
    # 生成查询嵌入
    query_embedding = embedder.get_query_embedding(request.query)
    
    # 构建搜索参数
    search_params = {
        "data": [query_embedding],
        "anns_field": "embedding",
        "limit": request.top_k,
        "param": {"metric_type": "L2", "params": {"nprobe": 10}},
        "expr": build_filter_expression(request.filters) if request.filters else None
    }
    
    # 执行搜索
    results = milvus_client.search(
        collection_name=request.collection,
        **search_params
    )
    
    # 过滤和格式化结果
    filtered_results = [
        {
            "id": hit.id,
            "score": 1.0 / (1.0 + hit.distance),
            "content": hit.entity.get('content', ''),
            "metadata": hit.entity.get('metadata', {})
        }
        for hit in results[0]
        if (1.0 / (1.0 + hit.distance)) >= request.score_threshold
    ]
    
    return {"query": request.query, "results": filtered_results}
向量索引管理
@app.post("/api/vector/collections/{collection_name}")
async def create_vector_collection(
    collection_name: str,
    dimension: int = 1024,
    index_type: str = "IVF_FLAT",
    metric_type: str = "L2"
):
    """
    创建和管理向量集合
    """
    # 检查集合是否存在
    if milvus_client.has_collection(collection_name):
        raise HTTPException(400, f"Collection {collection_name} already exists")
    
    # 定义schema
    schema = milvus_client.create_schema(
        auto_id=True,
        enable_dynamic_field=True
    )
    
    schema.add_field(field_name="id", datatype=DataType.INT64, is_primary=True)
    schema.add_field(field_name="embedding", datatype=DataType.FLOAT_VECTOR, dim=dimension)
    schema.add_field(field_name="content", datatype=DataType.VARCHAR, max_length=65535)
    
    # 创建索引参数
    index_params = milvus_client.prepare_index_params()
    index_params.add_index(
        field_name="embedding",
        index_type=index_type,
        metric_type=metric_type,
        params={"nlist": 1024}
    )
    
    # 创建集合
    milvus_client.create_collection(
        collection_name=collection_name,
        schema=schema,
        index_params=index_params
    )
    
    return {"status": "created", "collection": collection_name}

3. 实时数据流API

WebSocket实时通信
from fastapi import WebSocket, WebSocketDisconnect

class ConnectionManager:
    def __init__(self):
        self.active_connections: List[WebSocket] = []

    async def connect(self, websocket: WebSocket):
        await websocket.accept()
        self.active_connections.append(websocket)

    def disconnect(self, websocket: WebSocket):
        self.active_connections.remove(websocket)

    async def broadcast(self, message: str):
        for connection in self.active_connections:
            await connection.send_text(message)

manager = ConnectionManager()

@app.websocket("/api/ws/updates")
async def websocket_endpoint(websocket: WebSocket):
    await manager.connect(websocket)
    try:
        while True:
            data = await websocket.receive_text()
            # 处理实时数据更新
            await process_real_time_data(data, websocket)
    except WebSocketDisconnect:
        manager.disconnect(websocket)

async def process_real_time_data(data, websocket):
    """处理实时数据流"""
    try:
        message = json.loads(data)
        if message['type'] == 'subscribe':
            # 订阅数据更新
            await handle_subscription(message, websocket)
        elif message['type'] == 'publish':
            # 发布数据更新
            await manager.broadcast(json.dumps(message))
    except Exception as e:
        await websocket.send_text(json.dumps({"error": str(e)}))

🏗️ API性能优化策略

缓存策略实现

from functools import lru_cache
from redis import Redis
import json

class APICache:
    def __init__(self, redis_url: Optional[str] = None):
        self.redis = Redis.from_url(redis_url) if redis_url else None
        self.local_cache = {}
    
    async def get(self, key: str):
        """获取缓存数据"""
        if self.redis:
            try:
                cached = self.redis.get(key)
                if cached:
                    return json.loads(cached)
            except:
                pass
        
        return self.local_cache.get(key)
    
    async def set(self, key: str, value: Any, expire: int = 300):
        """设置缓存数据"""
        if self.redis:
            try:
                self.redis.setex(key, expire, json.dumps(value))
            except:
                pass
        
        self.local_cache[key] = value

# 使用缓存装饰器
def cache_response(expire: int = 60):
    def decorator(func):
        @wraps(func)
        async def wrapper(*args, **kwargs):
            cache_key = f"{func.__name__}:{str(args)}:{str(kwargs)}"
            cached = await cache_manager.get(cache_key)
            
            if cached:
                return cached
            
            result = await func(*args, **kwargs)
            await cache_manager.set(cache_key, result, expire)
            return result
        return wrapper
    return decorator

# 在API中使用缓存
@app.get("/api/documents/{doc_id}")
@cache_response(expire=300)
async def get_document(doc_id: str):
    """带缓存的文档获取API"""
    return await fetch_document_from_db(doc_id)

并发处理优化

import asyncio
from concurrent.futures import ThreadPoolExecutor

# 线程池执行器
thread_pool = ThreadPoolExecutor(max_workers=10)

@app.post("/api/process/batch")
async def batch_process_with_concurrency(
    items: List[str],
    max_concurrent: int = 5
):
    """
    支持高并发的批量处理API
    使用信号量控制并发度
    """
    semaphore = asyncio.Semaphore(max_concurrent)
    
    async def process_item(item):
        async with semaphore:
            return await process_single_item(item)
    
    # 并发处理所有项目
    tasks = [process_item(item) for item in items]
    results = await asyncio.gather(*tasks, return_exceptions=True)
    
    # 处理结果
    successful = []
    failed = []
    
    for i, result in enumerate(results):
        if isinstance(result, Exception):
            failed.append({"item": items[i], "error": str(result)})
        else:
            successful.append(result)
    
    return {
        "total": len(items),
        "successful": len(successful),
        "failed": len(failed),
        "results": successful,
        "errors": failed
    }

🔒 安全与认证机制

JWT认证集成

from fastapi import Depends, HTTPException, status
from fastapi.security import OAuth2PasswordBearer
from jose import JWTError, jwt
from passlib.context import CryptContext

# 安全配置
SECRET_KEY = "your-secret-key"
ALGORITHM = "HS256"
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="/api/auth/token")
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")

def verify_password(plain_password, hashed_password):
    return pwd_context.verify(plain_password, hashed_password)

def get_password_hash(password):
    return pwd_context.hash(password)

def create_access_token(data: dict, expires_delta: timedelta = None):
    to_encode = data.copy()
    if expires_delta:
        expire = datetime.utcnow() + expires_delta
    else:
        expire = datetime.utcnow() + timedelta(minutes=15)
    to_encode.update({"exp": expire})
    encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)
    return encoded_jwt

async def get_current_user(token: str = Depends(oauth2_scheme)):
    credentials_exception = HTTPException(
        status_code=status.HTTP_401_UNAUTHORIZED,
        detail="Could not validate credentials",
        headers={"WWW-Authenticate": "Bearer"},
    )
    try:
        payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
        username: str = payload.get("sub")
        if username is None:
            raise credentials_exception
    except JWTError:
        raise credentials_exception
    
    user = await get_user(username)
    if user is None:
        raise credentials_exception
    return user

# 受保护的API端点
@app.get("/api/protected/data")
async def protected_data(current_user: User = Depends(get_current_user)):
    """需要认证的数据访问API"""
    return {"message": f"Hello {current_user.username}", "data": sensitive_data}

API速率限制

from slowapi import Limiter
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded

limiter = Limiter(key_func=get_remote_address)

@app.exception_handler(RateLimitExceeded)
async def rate_limit_handler(request, exc):
    return JSONResponse(
        status_code=429,
        content={"detail": "Rate limit exceeded", "retry_after": exc.retry_after}
    )

@app.get("/api/data/limited")
@limiter.limit("5/minute")
async def limited_data(request: Request):
    """速率限制的API端点"""
    return {"data": "This is rate limited data"}

# 基于用户的速率限制
def user_based_limiter(user_id: str):
    return f"10/minute/{user_id}"

@app.get("/api/user/data")
@limiter.limit(user_based_limiter)
async def user_specific_data(
    request: Request,
    current_user: User = Depends(get_current_user)
):
    """基于用户的速率限制"""
    return {"user_data": get_user_data(current_user.id)}

📈 监控与日志记录

综合监控系统

import logging
from prometheus_client import Counter, Histogram
from starlette.middleware.base import BaseHTTPMiddleware

# Prometheus指标
API_REQUESTS = Counter('api_requests_total', 'Total API requests', ['method', 'endpoint', 'status'])
API_LATENCY = Histogram('api_request_latency_seconds', 'API request latency', ['endpoint'])

# 日志配置
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("api")

class MonitoringMiddleware(BaseHTTPMiddleware):
    async def dispatch(self, request, call_next):
        start_time = time.time()
        
        try:
            response = await call_next(request)
            latency = time.time() - start_time
            
            # 记录指标
            API_REQUESTS.labels(
                method=request.method,
                endpoint=request.url.path,
                status=response.status_code
            ).inc()
            
            API_LATENCY.labels(endpoint=request.url.path).observe(latency)
            
            # 记录访问日志
            logger.info(
                f"{request.method} {request.url.path} - {response.status_code} "
                f"- {latency:.3f}s"
            )
            
            return response
            
        except Exception as e:
            latency = time.time() - start_time
            logger.error(f"Error in {request.url.path}: {str(e)} - {latency:.3f}s")
            raise

# 应用中间件
app.add_middleware(MonitoringMiddleware)

# 健康检查端点
@app.get("/api/health")
async def health_check():
    """系统健康检查API"""
    return {
        "status": "healthy",
        "timestamp": datetime.utcnow().isoformat(),
        "version": "1.0.0"
    }

# 指标端点
@app.get("/api/metrics")
async def metrics():
    """Prometheus指标端点"""
    from prometheus_client import generate_latest
    return Response(generate_latest(), media_type="text/plain")

🚀 部署与扩展

Docker容器化部署

FROM python:3.9-slim

WORKDIR /app

# 安装系统依赖
RUN apt-get update && apt-get install -y \
    gcc \
    g++ \
    && rm -rf /var/lib/apt/lists/*

# 复制依赖文件
COPY requirements.txt .
RUN pip install -r requirements.txt

# 复制应用代码
COPY . .

# 创建非root用户
RUN useradd -m -u 1000 apiuser && chown -R apiuser:apiuser /app
USER apiuser

# 暴露端口
EXPOSE 8000

# 启动命令
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000", "--workers", "4"]

Kubernetes部署配置

apiVersion: apps/v1
kind: Deployment
metadata:
  name: ai-data-api
spec:
  replicas: 3
  selector:
    matchLabels:
      app: ai-data-api
  template:
    metadata:
      labels:
        app: ai-data-api
    spec:
      containers:
      - name: api
        image: ai-engineering-hub/data-api:latest
        ports:
        - containerPort: 8000
        env:
        - name: GROQ_API_KEY
          valueFrom:
            secretKeyRef:
              name: api-secrets
              key: groq-api-key
        resources:
          requests:
            memory: "512Mi"
            cpu: "250m"
          limits:
            memory: "1Gi"
            cpu: "500m"
        livenessProbe:
          httpGet:
            path: /api/health
            port: 8000
          initialDelaySeconds: 30
          periodSeconds: 10
---
apiVersion: v1
kind: Service
metadata:
  name: ai-data-api-service
spec:
  selector:
    app: ai-data-api
  ports:
  - port: 80
    targetPort: 8000
  type: LoadBalancer

🎯 总结与展望

AI Engineering Hub的数据API提供了完整的数据访问解决方案,从文档处理到向量搜索,从实时数据流到安全认证,覆盖了AI项目开发中的各种数据需求。通过本文的详细介绍和代码示例,你应该能够:

  1. 快速集成:五分钟内搭建起完整的数据API服务
  2. 灵活扩展:根据项目需求选择合适的数据处理模块
  3. 性能优化:利用缓存、并发和监控确保API高性能
  4. 安全保障:通过认证和速率限制保护数据安全
  5. 生产部署:使用容器化和云原生技术进行规模部署

未来,AI Engineering Hub将继续扩展数据API的能力,包括:

  • 🔄 更多数据源连接器(数据库、云存储、消息队列)
  • 🤖 智能数据预处理和增强功能
  • 📊 高级数据分析和可视化接口
  • 🌐 分布式数据缓存和同步机制

立即行动:开始使用AI Engineering Hub数据API,让你的AI项目开发效率提升300%!记得点赞、收藏、关注三连,下期我们将深入探讨AI模型部署和推理优化。

【免费下载链接】ai-engineering-hub In-depth tutorials on LLMs, RAGs and real-world AI agent applications. 【免费下载链接】ai-engineering-hub 项目地址: https://gitcode.com/GitHub_Trending/ai/ai-engineering-hub

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值