AI Agents Masterclass测试生成:自动化测试用例创建

AI Agents Masterclass测试生成:自动化测试用例创建

【免费下载链接】ai-agents-masterclass Follow along with my AI Agents Masterclass videos! All of the code I create and use in this series on YouTube will be here for you to use and even build on top of! 【免费下载链接】ai-agents-masterclass 项目地址: https://gitcode.com/GitHub_Trending/ai/ai-agents-masterclass

为什么需要自动化测试用例生成?

在AI Agent开发过程中,手动编写测试用例往往耗时且容易遗漏边缘情况。随着Agent功能的复杂性增加,测试覆盖率成为确保系统稳定性的关键因素。传统测试方法面临以下痛点:

  • 重复劳动:相似的测试逻辑需要反复编写
  • 覆盖不全:难以穷举所有可能的输入组合
  • 维护困难:功能变更时需要同步更新大量测试用例
  • 效率低下:手动测试无法跟上快速迭代的开发节奏

AI Agent测试框架设计原则

测试金字塔模型

mermaid

核心测试组件

测试类型测试目标工具推荐频率
单元测试单个函数/方法pytest, unittest每次提交
集成测试模块间交互pytest, Docker每日构建
E2E测试完整业务流程Playwright, Selenium发布前

自动化测试用例生成实战

基础测试框架搭建

首先创建测试目录结构:

tests/
├── unit/
│   ├── test_tools.py
│   ├── test_agents.py
│   └── conftest.py
├── integration/
│   ├── test_workflows.py
│   └── test_external_services.py
├── e2e/
│   └── test_full_workflow.py
└── fixtures/
    ├── mock_data.py
    └── test_utils.py

单元测试示例:工具函数测试

import pytest
from unittest.mock import Mock, patch
from agents import create_asana_task, get_tools

class TestAsanaTools:
    
    @pytest.fixture
    def mock_asana_api(self):
        """模拟Asana API响应"""
        with patch('agents.tasks_api_instance') as mock_api:
            mock_response = {
                "data": {
                    "gid": "12345",
                    "name": "Test Task",
                    "due_on": "2024-01-01"
                }
            }
            mock_api.create_task.return_value = mock_response
            yield mock_api
    
    def test_create_asana_task_success(self, mock_asana_api):
        """测试成功创建Asana任务"""
        result = create_asana_task("Test Task", "2024-01-01")
        
        assert "12345" in result
        mock_asana_api.create_task.assert_called_once()
    
    def test_create_asana_task_with_today(self, mock_asana_api):
        """测试使用today作为due_on参数"""
        with patch('agents.datetime') as mock_datetime:
            mock_datetime.now.return_value.date.return_value = "2024-01-01"
            result = create_asana_task("Test Task", "today")
            
            assert "2024-01-01" in result
    
    def test_get_tools_structure(self):
        """测试工具定义结构"""
        tools = get_tools()
        
        assert len(tools) == 1
        assert tools[0]["type"] == "function"
        assert "create_asana_task" in tools[0]["function"]["name"]

集成测试:Agent工作流测试

import json
from unittest.mock import patch, MagicMock
from agents import prompt_ai

class TestAgentWorkflow:
    
    def test_agent_with_tool_calling(self):
        """测试Agent调用工具的工作流程"""
        mock_messages = [
            {"role": "system", "content": "You are a test assistant"},
            {"role": "user", "content": "Create a task called 'Test Task' for today"}
        ]
        
        # 模拟LLM响应,要求调用工具
        mock_completion = MagicMock()
        mock_completion.choices[0].message.tool_calls = [MagicMock()]
        mock_completion.choices[0].message.tool_calls[0].function.name = "create_asana_task"
        mock_completion.choices[0].message.tool_calls[0].function.arguments = json.dumps({
            "task_name": "Test Task",
            "due_on": "2024-01-01"
        })
        
        with patch('agents.client.chat.completions.create') as mock_create:
            with patch('agents.create_asana_task') as mock_task:
                # 第一次调用返回工具调用请求
                mock_create.side_effect = [
                    mock_completion,
                    MagicMock()  # 第二次调用返回最终响应
                ]
                mock_task.return_value = json.dumps({"success": True})
                
                result = prompt_ai(mock_messages)
                
                assert mock_task.called
                assert len(mock_messages) > 2  # 应该添加了工具调用和响应消息

端到端测试:完整业务流程

import asyncio
from playwright.async_api import async_playwright

class TestE2EAgent:
    
    async def test_complete_agent_workflow(self):
        """端到端测试完整Agent业务流程"""
        async with async_playwright() as p:
            browser = await p.chromium.launch()
            page = await browser.new_page()
            
            # 启动Agent应用
            await page.goto("http://localhost:8000")
            
            # 输入任务创建指令
            await page.fill("#chat-input", "Create a task for tomorrow called 'Important Meeting'")
            await page.click("#send-button")
            
            # 验证任务创建成功
            await page.wait_for_selector(".task-created", timeout=5000)
            task_text = await page.text_content(".task-created")
            
            assert "Important Meeting" in task_text
            assert "success" in task_text.lower()
            
            await browser.close()

测试数据生成策略

使用Faker生成测试数据

from faker import Faker
import json

fake = Faker()

def generate_test_tasks(num_tasks=10):
    """生成测试用的任务数据"""
    tasks = []
    for _ in range(num_tasks):
        task = {
            "name": fake.sentence(nb_words=4),
            "due_on": fake.date_this_year().isoformat(),
            "description": fake.paragraph()
        }
        tasks.append(task)
    return tasks

def generate_edge_case_tasks():
    """生成边界情况测试数据"""
    edge_cases = [
        {"name": "", "due_on": "2024-01-01"},  # 空任务名
        {"name": "A" * 1000, "due_on": "2024-01-01"},  # 超长任务名
        {"name": "Test Task", "due_on": "invalid-date"},  # 无效日期
        {"name": "Test Task", "due_on": "9999-99-99"},  # 不可能日期
    ]
    return edge_cases

测试覆盖率报告

配置pytest覆盖率检测:

# pytest.ini
[tool:pytest]
testpaths = tests
addopts = -v --cov=agents --cov-report=html --cov-report=xml

持续集成流水线

GitHub Actions配置

name: AI Agent CI

on:
  push:
    branches: [ main ]
  pull_request:
    branches: [ main ]

jobs:
  test:
    runs-on: ubuntu-latest
    strategy:
      matrix:
        python-version: [3.9, 3.10, 3.11]
    
    steps:
    - uses: actions/checkout@v4
    - name: Set up Python ${{ matrix.python-version }}
      uses: actions/setup-python@v4
      with:
        python-version: ${{ matrix.python-version }}
    
    - name: Install dependencies
      run: |
        python -m pip install --upgrade pip
        pip install -r requirements.txt
        pip install pytest pytest-cov
    
    - name: Run unit tests
      run: |
        pytest tests/unit/ -v --cov=agents --cov-report=xml
    
    - name: Run integration tests
      run: |
        pytest tests/integration/ -v
      
    - name: Upload coverage reports
      uses: codecov/codecov-action@v3
      with:
        file: ./coverage.xml

测试最佳实践

1. 模拟外部依赖

@pytest.fixture
def mock_openai_client():
    """模拟OpenAI客户端"""
    with patch('agents.OpenAI') as mock_client:
        mock_instance = mock_client.return_value
        mock_instance.chat.completions.create.return_value = MagicMock()
        yield mock_instance

2. 参数化测试

@pytest.mark.parametrize("task_name,due_on,expected", [
    ("Simple Task", "2024-01-01", True),
    ("", "2024-01-01", False),  # 空任务名
    ("A" * 1000, "2024-01-01", False),  # 超长任务名
])
def test_task_validation(task_name, due_on, expected):
    """参数化测试任务验证逻辑"""
    result = validate_task(task_name, due_on)
    assert result == expected

3. 异步测试处理

@pytest.mark.asyncio
async def test_async_agent_workflow():
    """测试异步Agent工作流"""
    result = await async_prompt_ai(test_messages)
    assert "success" in result.lower()

测试报告与分析

生成测试报告

# 生成HTML覆盖率报告
pytest --cov=agents --cov-report=html

# 生成JUnit格式报告
pytest --junitxml=test-results.xml

# 生成性能测试报告
pytest --benchmark-json=benchmark.json

测试指标监控

指标目标值监控频率
代码覆盖率>90%每次提交
测试通过率100%每次运行
测试执行时间<5分钟每日构建
缺陷发现率<1%每周评审

总结

自动化测试用例生成是AI Agent开发中不可或缺的一环。通过建立完善的测试体系,我们可以:

  1. 提高开发效率:减少手动编写测试用例的时间
  2. 增强代码质量:确保更高的测试覆盖率和代码稳定性
  3. 加速迭代速度:快速验证功能变更和重构
  4. 降低维护成本:自动化测试更容易维护和扩展

采用本文介绍的测试策略和工具链,你可以为AI Agents Masterclass项目构建强大的自动化测试基础设施,确保每个Agent都能可靠地运行在生产环境中。

记住:好的测试不是负担,而是加速开发的催化剂。投资测试基础设施的回报将在项目的整个生命周期中持续显现。

【免费下载链接】ai-agents-masterclass Follow along with my AI Agents Masterclass videos! All of the code I create and use in this series on YouTube will be here for you to use and even build on top of! 【免费下载链接】ai-agents-masterclass 项目地址: https://gitcode.com/GitHub_Trending/ai/ai-agents-masterclass

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值