PicoContainer发布1.0 BETA版

PicoContainer是“微核心”容器,利用Inversion of Control和Template Method模式,提供面向组件的开发、运行环境。它特性基础,是研究的好对象。PicoContainer团队发布了1.0首个测试版,其组件模型简单,还鼓励容器开发多样性,有姐妹项目NanoContainer。
部署运行你感兴趣的模型镜像
PicoContainer是一个“微核心”(micro-kernel)的容器。它利用了Inversion of Control模式和Template Method模式,提供面向组件的开发、运行环境。从名字上就可以看出,PicoContainer是“极小”的容器,只提供了最基本的特性。其他容器可以在它的基础上加入更多特性。因其小,PicoContainer也是剖析、研究的最佳对象。
 
————————————
 
The PicoContainer team is proud to announce the release of the first beta of PicoContainer 1.0.

PicoContainer is an embeddable container for type-3 Inversion of Control (IoC) components. It is delivered as a set of abstractions, a couple of instantiable containers, a few adaptors for hierarchies and (optional) lifecycle management as well as support classes. We genuinely believe this to be the logical conclusion of the IoC component model.

Components:

The component model (igoring our lifecycle support) is unencumbered by obligations of API. There is nothing to extend, nothing to implement and nothing to throw. The component model forces no obligations for XML meta-data on the developer or user of PicoContainer components. The design is so simple, that for very tightly coupled deployments, a developer could cherry pick components and embed them in their application without even importing let alone using anything from the org.picocontainer codebase.

Diversity:

From the abstractions, other container developers can build containers compatible and interoperable with PicoContainer. We encourage diversity of implementation as we are not building a single container. In terms of the PicoContainer deliverable, there are no external Jar dependancies, and no use of XML for component declarations. Along with the PicoContainer deliverable, there is a Technology Compatability Kit (TCK). This is in the form of the abstract JUnit test cases. A container developer can use this to ensure than their implementation of a PicoContainer is compatible with the design. Container developers may choose from-scratch designs, wrapping of existing classes, or extending existing classes.

NanoContainer:

As a sister project to PicoContainer, we also have NanoContainer. Like PicoContainer, NanoContainer is more than one container. All are built to the PicoContainer design, and offer different embeddable visions. One interoperates with Nanning (the aspect framework) to provide aspect capability for arbitary components. Another retrofits JMX compatability to arbitary components. Some of the NanoContainers deliver component assembly and configuration via XML.

The Plan:

The plan is to build more containers and to sell the component design further.

- The PicoContainer team.

Visit www.picocontainer.org

您可能感兴趣的与本文相关的镜像

Llama Factory

Llama Factory

模型微调
LLama-Factory

LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调

六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,详细介绍了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程的理论与Matlab代码实现过程。文档还涵盖了PINN物理信息神经网络在微分方程求解、主动噪声控制、天线分析、电动汽车调度、储能优化等多个工程与科研领域的应用案例,并提供了丰富的Matlab/Simulink仿真资源和技术支持方向,体现了其在多学科交叉仿真与优化中的综合性价值。; 适合人群:具备一定Matlab编程基础,从事机器人控制、自动化、智能制造、电力系统或相关工程领域研究的科研人员、研究生及工程师。; 使用场景及目标:①掌握六自由度机械臂的运动学与动力学建模方法;②学习人工神经网络在复杂非线性系统控制中的应用;③借助Matlab实现动力学方程推导与仿真验证;④拓展至路径规划、优化调度、信号处理等相关课题的研究与复现。; 阅读建议:建议按目录顺序系统学习,重点关注机械臂建模与神经网络控制部分的代码实现,结合提供的网盘资源进行实践操作,并参考文中列举的优化算法与仿真方法拓展自身研究思路。
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值