归并排序(Merge Sort)

 归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

首先考虑下如何将将二个有序数列合并。这个非常简单,只要从比较二个数列的第一个数,谁小就先取谁,取了后就在对应数列中删除这个数。然后再进行比较,如果有数列为空,那直接将另一个数列的数据依次取出即可。

//将有序数组a[]和b[]合并到c[]中
void MemeryArray(int a[], int n, int b[], int m, int c[])
{
	int i, j, k;

	i = j = k = 0;
	while (i < n && j < m)
	{
		if (a[i] < b[j])
			c[k++] = a[i++];
		else
			c[k++] = b[j++]; 
	}

	while (i < n)
		c[k++] = a[i++];

	while (j < m)
		c[k++] = b[j++];
}

可以看出合并有序数列的效率是比较高的,可以达到O(n)。

解决了上面的合并有序数列问题,再来看归并排序,其的基本思路就是将数组分成二组A,B,如果这二组组内的数据都是有序的,那么就可以很方便的将这二组数据进行排序。如何让这二组组内数据有序了?

可以将A,B组各自再分成二组。依次类推,当分出来的小组只有一个数据时,可以认为这个小组组内已经达到了有序,然后再合并相邻的二个小组就可以了。这样通过先递的分解数列,再合数列就完成了归并排序。

//将有二个有序数列a[first...mid]和a[mid...last]合并。
void mergearray(int a[], int first, int mid, int last, int temp[])
{
	int i = first, j = mid + 1;
	int m = mid,   n = last;
	int k = 0;
	
	while (i <= m && j <= n)
	{
		if (a[i] <= a[j])
			temp[k++] = a[i++];
		else
			temp[k++] = a[j++];
	}
	
	while (i <= m)
		temp[k++] = a[i++];
	
	while (j <= n)
		temp[k++] = a[j++];
	
	for (i = 0; i < k; i++)
		a[first + i] = temp[i];
}
void mergesort(int a[], int first, int last, int temp[])
{
	if (first < last)
	{
		int mid = (first + last) / 2;
		mergesort(a, first, mid, temp);    //左边有序
		mergesort(a, mid + 1, last, temp); //右边有序
		mergearray(a, first, mid, last, temp); //再将二个有序数列合并
	}
}

bool MergeSort(int a[], int n)
{
	int *p = new int[n];
	if (p == NULL)
		return false;
	mergesort(a, 0, n - 1, p);
	delete[] p;
	return true;
}

 

归并排序的效率是比较高的,设数列长为N,将数列分开成小数列一共要logN步,每步都是一个合并有序数列的过程,时间复杂度可以记为O(N),故一共为O(N*logN)。因为归并排序每次都是在相邻的数据中进行操作,所以归并排序在O(N*logN)的几种排序方法(快速排序,归并排序,希尔排序,堆排序)也是效率比较高的。

 

在本人电脑上对冒泡排序,直接插入排序,归并排序及直接使用系统的qsort()进行比较(均在Release版本下)

对20000个随机数据进行测试:


对50000个随机数据进行测试:


再对200000个随机数据进行测试:


 

注:有的书上是在mergearray()合并有序数列时分配临时数组,但是过多的new操作会非常费时。因此作了下小小的变化。只在MergeSort()中new一个临时数组。后面的操作都共用这一个临时数组。

 

 转自:http://blog.youkuaiyun.com/morewindows/article/details/6678165

### 归并排序的实现原理 归并排序是一种基于分治法(Divide and Conquer)的有效排序算法。其核心思想是通过将待排序数组分割为更小的部分,分别对这些部分进行排序后再将其合并成为一个整体有序的结果[^1]。 具体来说,归并排序的过程可以分为以下几个方面: #### 1. **分解** 整个数据集被递归地划分为较小的子集合,直到每个子集合仅包含单个元素为止。因为单一元素本身已经是有序的,所以这一步骤完成了基础单元的创建[^2]。 #### 2. **合并** 当所有的子集合都已经被拆解到最小单位之后,开始逐步地把它们两两合并起来,在每次合并的过程中都会确保新形成的组合也是按照顺序排列好的。这种“归并”的过程会一直持续下去,直至最终形成一个完整的、完全有序的数据列表[^3]。 以下是归并排序的核心伪代码表示: ```python def merge_sort(arr): if len(arr) <= 1: return arr mid = len(arr) // 2 left_half = merge_sort(arr[:mid]) right_half = merge_sort(arr[mid:]) return merge(left_half, right_half) def merge(left, right): sorted_array = [] i = j = 0 while i < len(left) and j < len(right): if left[i] < right[j]: sorted_array.append(left[i]) i += 1 else: sorted_array.append(right[j]) j += 1 sorted_array.extend(left[i:]) sorted_array.extend(right[j:]) return sorted_array ``` 这段代码展示了如何使用 Python 来实现归并排序的功能。其中 `merge` 函数负责执行实际的合并操作,而 `merge_sort` 则控制着递归调用以及何时停止进一步划分输入数组。 ### 时间复杂度分析 由于每一次都将当前序列分成两半处理,并且每一层都需要遍历全部 n 项来进行比较和移动,因此总的运行时间为 O(n log n)。 ### 稳定性特点 值得注意的是,归并排序属于稳定性的排序方式之一,这意味着即使存在相等的关键字记录也不会改变彼此原有的次序关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值