Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
//解题思路:
//根据BST的性质,左子树节点的值<根节点的值,右子树节点的值>根节点的值
//记当前节点为node,从根节点root出发
//若p与q分别位于node的两侧,或其中之一的值与node相同,则node为LCA
//若p的值小于node的值,则LCA位于node的左子树
//否则,LCA位于node的右子树
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
while (root){
if( (p->val - root->val)*(q->val - root->val)<=0 ) return root;
else if (p->val < root->val)
return lowestCommonAncestor(root->left, p, q);
else
return lowestCommonAncestor(root->right, p, q);
}
}
};

本文介绍如何在二叉搜索树中寻找两个指定节点的最低公共祖先(LCA),利用二叉搜索树的特性,提出一种递归算法解决此问题,并提供C++实现。
2757

被折叠的 条评论
为什么被折叠?



