z-index不起作用的大坑

本文深入探讨了CSS中z-index属性的使用原则及其常见问题,解析了z-index在不同情况下的表现,如父标签的position属性设置、问题标签的position属性缺失或存在浮动属性时的z-index失效现象,并提供了相应的解决方案。

转载:https://blog.youkuaiyun.com/hcrw01/article/details/85986115

一对兄弟节点,insert和parent,parent有两个子节点subtop和subbottom,展现的结果是想让subtop在insert上面,subbottom在insert下面,

代码如下:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Document</title>
    <style type="text/css">
        .insert{
            position: relative;
            z-index:100;
            background: green;
            width:300px;
            height:300px;
            top:100px;
        }
        .parent{
            /*position:relative;
            z-index: 1000;*/
            width:200px;
            height:200px;
            /*left:0;
            top:-50px;*/
            border:1px solid #eee;
        }
        .subbottom{
            position:relative;
            z-index: 50;
            width:200px;
            height:200px;
            background: red;
            top:-100px;
            left:0;
 
        }
        .subtop{
            position: relative;
            z-index:1100;
            width:100px;
            height:100px;
            left:0;
            top:0;
            background: blue;
        }
    </style>
</head>
<body>
    <div class="insert"></div>
    <div class="parent">
        <div class="subtop"></div>
        <div class="subbottom"></div>
    </div>
</body>
</html>

在这里插入图片描述

其实原理也很简单,就是利用了z-index的覆盖问题,在写的过程中我发现无论怎么改变,insert的z-index总是无效的,于是百度了一下z-index无效的情况,一共有三种:
1、父标签 position属性为relative;

2、问题标签无position属性(不包括static);

3、问题标签含有浮动(float)属性。

这样也很好理解为什么parent设置了position和z-index之后insert的z-index就会失效的问题了,他的解决办法有是三个:

1、position:relative改为position:absolute;

2、浮动元素添加position属性(如relative,absolute等);

3、去除浮动。

所以,去掉parent的position和z-index,达到了我想要的效果

分享一个经典编程课程资源群:
在这里插入图片描述

/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "i2c.h" #include "tim.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "math.h" #include "font6x8.h" #include "sdd1306.h" #include "key.h" #include "stdio.h" #include "vofa.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ int a,b,c,d; float f=0.5;float f1=1;float f2=2;float z=0; float t=3.14/4; int n =1; uint16_t current_freq = 100; uint16_t current_duty = 50; #define K1 HAL_GPIO_ReadPin(GPIOA,GPIO_PIN_11) #define K2 HAL_GPIO_ReadPin(GPIOA,GPIO_PIN_12) #define BUFFER_SIZE 64 uint8_t rx_byte; // 当前接收到的字节 char rx_buffer[BUFFER_SIZE]; // 接收缓冲区 uint16_t rx_index = 0; // 当前写入位置 /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ void ProcessReceivedString(char *input); static uint32_t key_last_time = 0; void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)//中断回调 { if (huart == &huart3) { // 如果收到的是 '\n' 或 '\r',表示命令结束 if (rx_byte == '\n' || rx_byte == '\r') { if (rx_index > 0) { rx_buffer[rx_index] = '\0'; // 结束字符串 // 处理接收到的内容 ProcessReceivedString(rx_buffer); // 清空缓冲区 rx_index = 0; } } else { // 普通字符加入缓冲区(防溢出) if (rx_index < BUFFER_SIZE - 1) { rx_buffer[rx_index++] = rx_byte; } } // 重新开启下一次接收 HAL_UART_Receive_IT(&huart3, &rx_byte, 1); } } void ProcessReceivedString(char *input) { char output[128]; // 构造输出:"xx is ok !" snprintf(output, sizeof(output), "%s is ok !", input); // 发送回上位机 printf("%s\r\n", output); // 如果有 OLED 屏幕,也在屏幕上显示 OLED_Clear(); OLED_ShowString(0, 16, output,1); OLED_UpdateScreen(); } static void BreathingLight(void){ float t1 = HAL_GetTick()*0.001; float duty1 = 0.5 * sin(f*3.14*t1+a*t/f)+0.5; uint16_t arr1 = __HAL_TIM_GET_AUTORELOAD(&htim1); uint16_t ccr1 = duty1 * (arr1+1); __HAL_TIM_SET_COMPARE(&htim1,TIM_CHANNEL_1,ccr1); float t2 = HAL_GetTick()*0.001; float duty2 = 0.5 * sin(f*3.14*t2+b*t/f)+0.5; uint16_t arr2 = __HAL_TIM_GET_AUTORELOAD(&htim2); uint16_t ccr2 = duty2* (arr2+1); __HAL_TIM_SET_COMPARE(&htim2,TIM_CHANNEL_1,ccr2); float t3 = HAL_GetTick()*0.001; float duty3 = 0.5 * sin(f*3.14*t3+c*t/f)+0.5; uint16_t arr3 = __HAL_TIM_GET_AUTORELOAD(&htim3); uint16_t ccr3 = duty3 * (arr3+1); __HAL_TIM_SET_COMPARE(&htim3,TIM_CHANNEL_1,ccr3); float t4 = HAL_GetTick()*0.001; float duty4 = 0.5 * sin(f*3.14*t4+d*t/f)+0.5; uint16_t arr4 = __HAL_TIM_GET_AUTORELOAD(&htim4); uint16_t ccr4 = duty4 * (arr4+1); __HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_3,ccr4); } //static void UpdateOLEDDisplay(void) //{ // uint32_t psc = htim1.Init.Prescaler; // uint32_t arr = htim1.Init.Period; // // float timer_clock_freq = (float)HAL_RCC_GetPCLK2Freq(); // float freq = timer_clock_freq / ((arr + 1) * (psc + 1)); // // // 3. 获取TIM1通道1的比较值(CCR) // uint32_t ccr = __HAL_TIM_GET_COMPARE(&htim1, TIM_CHANNEL_2); // // // 4. 计算占空比 // float duty_cycle = (float)ccr / (arr + 1) * 100.0f; // 转换为百分比 // char display_buf[32]; // // // 3. 将数值格式化为字符串 // sprintf(display_buf, "Freq: %.1f Hz", freq); // OLED_ShowString(0, 0, (uint8_t*)display_buf, 16); // // // sprintf(display_buf, "Duty: %.1f %%", duty_cycle); // OLED_ShowString(0, 8, (uint8_t*)display_buf, 16); // // // OLED_DrawSquareWave(0, 32, 16, freq, duty_cycle); // // OLED_UpdateScreen(); // 刷新屏幕显示 //} //void UpdateOLEDDisplay(void) //{ // char buf[32]; // // 直接使用 current_freq 和 current_duty 显示 // sprintf(buf, "Freq: %lu Hz", (unsigned long)current_freq); // OLED_ShowString(0, 0, buf, 1); // 第一行显示频率 // sprintf(buf, "Duty: %d %%", current_duty); // OLED_ShowString(0, 8, buf, 1); // 第二行显示占空比 // // 绘制方波图形(x_start=0, y_center=32, height=16) // OLED_DrawSquareWave(0, 32, 16, (float)current_freq, (float)current_duty); // OLED_UpdateScreen(); // 统一刷新屏幕 //} void UpdateOLEDDisplay(void) { char buf[32]; sprintf(buf, "Freq: %lu Hz", (unsigned long)current_freq); OLED_ShowString(0, 0, buf, 1); // 显示频率 sprintf(buf, "Duty: %d %%", current_duty); OLED_ShowString(0, 8, buf, 1); // 显示占空比 OLED_UpdateText(); // 不再绘制静态波形图 // 所有波形由 OLED_UpdateWaveform() 负责动态刷新 } //重定向 int fputc(int ch, FILE *f) { HAL_UART_Transmit(&huart3, (uint8_t*)&ch, 1, HAL_MAX_DELAY); return ch; } int fgetc(FILE *f) { uint8_t ch = 0; HAL_UART_Receive(&huart3, &ch, 1, 0xffff); return ch; } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_TIM2_Init(); MX_TIM1_Init(); MX_TIM3_Init(); MX_TIM4_Init(); MX_I2C1_Init(); MX_USART3_UART_Init(); /* USER CODE BEGIN 2 */ HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim2,TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim3,TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim4,TIM_CHANNEL_3); HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_2); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ OLED_Init(); OLED_Clear(); // 初始化目标参数 OLED_SetWaveParams((float)current_freq, (float)current_duty); HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_2); // 更新PWM HAL_UART_Receive_IT(&huart3, &rx_byte, 1);//启动中断 Update_ARR(); // 设置ARR和CCR OLED_Fill(0); while (1) { Key_Scan_All(); // 每 50ms 更新一次文字显示 static uint32_t last_update = 0; if (HAL_GetTick() - last_update >= 50) { UpdateOLEDDisplay(); last_update = HAL_GetTick(); } // 动态刷新波形(约20Hz) OLED_UpdateWaveform(); //老式呼吸灯 // if (K1 == 0) // { // HAL_Delay(10); // if(K1 == 0) // { // while(K1==0); // n = -n; // // } // } // if (K2 == 0) //// { //// HAL_Delay(10); //// if(K2 == 0) //// { //// while(K2==0); //// z=f2; //// f2=f1; //// f1=f; //// f=z; //// } //// } if (!K1 && (HAL_GetTick() - key_last_time) > 10) { key_last_time = HAL_GetTick(); n = -n; while (!K1); // 等待释放(短时间可用) } if (!K2 && (HAL_GetTick() - key_last_time) > 10) { key_last_time = HAL_GetTick(); z=f2; f2=f1; f1=f; f=z; while (!K1); // 等待释放(短时间可用) } if (n == 1){ a=1;b=2;c=3;d=4; BreathingLight(); } else if(n == -1){ a=4;b=3;c=2;d=1; BreathingLight(); } // VOFA+ 数据发送(10Hz) static uint32_t last_vofa_send = 0; if (HAL_GetTick() - last_vofa_send >= 100) { Send_SquareWave_VOFA(); last_vofa_send = HAL_GetTick(); } HAL_Delay(1); // 防止死循环占用过高 // //1.阻塞式发送 // HAL_UART_Transmit(&huart3,(uint8_t *)"hello world",12,0XFFFF); // HAL_Delay(500); // //2.重定向 // printf("hello world"); // HAL_Delay(500); // //3.阻塞式接收 // uint8_t Buf[5]; // HAL_UART_Receive(&huart3,Buf,5,0XFFFF); // HAL_UART_Transmit(&huart3,Buf,5,0XFFFF); // HAL_Delay(500); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */#include "key.h" #include "main.h" #include "tim.h" extern uint16_t current_freq; extern uint16_t current_duty; // 按键消抖函数 static uint8_t key_Debounce(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin) { if (HAL_GPIO_ReadPin(GPIOx, GPIO_Pin) == GPIO_PIN_RESET) // 假设低电平有效 { HAL_Delay(10); if (HAL_GPIO_ReadPin(GPIOx, GPIO_Pin) == GPIO_PIN_RESET) { return 1; // 确认按下 } } return 0; } void Update_CCR(void) { uint32_t arr_val = __HAL_TIM_GET_AUTORELOAD(&htim1); // CCR = ARR * (Duty / 100.0) uint32_t CCR_new = (uint32_t)((float)(arr_val + 1) * (current_duty / 100.0f)) - 1; // 确保 CCR 不会超出 ARR if (CCR_new >= arr_val) CCR_new = arr_val - 1; if (CCR_new < 1) CCR_new = 1; // 使用 TIM1 Channel 2 __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, CCR_new); } void Update_ARR(void) { uint32_t F_clk = HAL_RCC_GetPCLK2Freq(); uint32_t psc_val = htim1.Instance->PSC; // 保护除以零 if (current_freq == 0) current_freq = FREQ_MIN; uint32_t ARR_new = (F_clk / (current_freq * (psc_val + 1))) - 1; // 确保 ARR 不会溢出或过小 if (ARR_new > 0xFFFF) ARR_new = 0xFFFF; if (ARR_new < 1) ARR_new = 1; __HAL_TIM_DISABLE(&htim1); __HAL_TIM_SET_AUTORELOAD(&htim1, ARR_new); __HAL_TIM_ENABLE(&htim1); Update_CCR(); } void Key_Scan_All(void) { // PINA2: 频率增加 (F+) if (key_Debounce(GPIOA, GPIO_PIN_2) == 1) { if (current_freq < FREQ_MAX) { current_freq += FREQ_STEP; if (current_freq > FREQ_MAX) current_freq = FREQ_MAX; Update_ARR(); // 更新频率和 CCR } while (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_2) == GPIO_PIN_RESET); // 等待按键释放 } // PINA3: 频率减小 (F-) if (key_Debounce(GPIOA, GPIO_PIN_3) == 1) { if (current_freq > FREQ_MIN) { current_freq -= FREQ_STEP; if (current_freq < FREQ_MIN) current_freq = FREQ_MIN; Update_ARR(); // 更新频率和 CCR } while (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_3) == GPIO_PIN_RESET); } // PINA4: 占空比增加 (D+) if (key_Debounce(GPIOA, GPIO_PIN_4) == 1) { if (current_duty < DUTY_MAX) { current_duty += DUTY_STEP; if (current_duty > DUTY_MAX) current_duty = DUTY_MAX; Update_CCR(); // 更新占空比 } while (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_4) == GPIO_PIN_RESET); } // PINA5: 占空比减小 (D-) if (key_Debounce(GPIOA, GPIO_PIN_5) == 1) { if (current_duty > DUTY_MIN) { current_duty -= DUTY_STEP; if (current_duty < DUTY_MIN) current_duty = DUTY_MIN; Update_CCR(); // 更新占空比 } while (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_5) == GPIO_PIN_RESET); // 等待按键释放 } } #include "i2c.h" // 包含hi2c1的声明 #include "sdd1306.h" #include "font6x8.h" #include <string.h> #define OLED_I2C_ADDR 0x78 // OLED I2C写地址 (0x3C<<1) #define OLED_WIDTH 128 #define OLED_HEIGHT 64 static uint8_t OLED_Buffer[OLED_WIDTH * OLED_HEIGHT / 8]; //static uint8_t wave_x = 0; // 波形当前的X坐标 static uint32_t last_draw_time = 0; // 上次绘制波形的时间戳 static uint8_t wave_color = 1; // 波形颜色 (1 = 白色) static float target_frequency = 1.0f; // 默认频率 1Hz static float target_duty_cycle = 50.0f; // 默认占空比 50% uint8_t OLED_GetPixel(int x, int y) { if (x < 0 || x >= OLED_WIDTH || y < 0 || y >= OLED_HEIGHT) return 0; uint8_t page = y / 8; uint8_t bit = y % 8; return (OLED_Buffer[page * OLED_WIDTH + x] >> bit) & 0x01; } void OLED_WriteCommand(uint8_t cmd) { // 发送一个命令字节 (控制字节=0x00) HAL_I2C_Mem_Write(&hi2c1, OLED_I2C_ADDR, 0x00, I2C_MEMADD_SIZE_8BIT, &cmd, 1, HAL_MAX_DELAY); } void OLED_WriteData(uint8_t data) { // 发送一个数据字节 (控制字节=0x40) HAL_I2C_Mem_Write(&hi2c1, OLED_I2C_ADDR, 0x40, I2C_MEMADD_SIZE_8BIT, &data, 1, HAL_MAX_DELAY); } void OLED_UpdateScreen(void) { // 刷新OLED显示 for (uint8_t page = 0; page < 8; page++) { OLED_WriteCommand(0xB0 + page); // 设置页地址(0xB0 = page0) OLED_WriteCommand(0x00); // 设置列低4位为0 OLED_WriteCommand(0x10); // 设置列高4位为0 (列地址0) // 按当前页,将该页的缓冲区数据写出128字节 HAL_I2C_Mem_Write(&hi2c1, OLED_I2C_ADDR, 0x40, I2C_MEMADD_SIZE_8BIT, &OLED_Buffer[page * OLED_WIDTH], OLED_WIDTH, HAL_MAX_DELAY); } } void OLED_Clear(void) { memset(OLED_Buffer, 0x00, sizeof(OLED_Buffer)); // 缓冲设0 // 刷新OLED显示 for (uint8_t page = 0; page < 8; page++) { OLED_WriteCommand(0xB0 + page); // 设置页地址(0xB0 = page0) OLED_WriteCommand(0x00); // 设置列低4位为0 OLED_WriteCommand(0x10); // 设置列高4位为0 (列地址0) // 按当前页,将该页的缓冲区数据写出128字节 HAL_I2C_Mem_Write(&hi2c1, OLED_I2C_ADDR, 0x40, I2C_MEMADD_SIZE_8BIT, &OLED_Buffer[page * OLED_WIDTH], OLED_WIDTH, HAL_MAX_DELAY); } } void OLED_Fill(uint8_t color) { // color=1 -> 全亮; color=0 -> 全黑 uint8_t fill = (color ? 0xFF : 0x00); memset(OLED_Buffer, fill, sizeof(OLED_Buffer)); // 刷新显示(与OLED_Clear类似) for (uint8_t page = 0; page < 8; page++) { OLED_WriteCommand(0xB0 + page); OLED_WriteCommand(0x00); OLED_WriteCommand(0x10); HAL_I2C_Mem_Write(&hi2c1, OLED_I2C_ADDR, 0x40, I2C_MEMADD_SIZE_8BIT, &OLED_Buffer[page * OLED_WIDTH], OLED_WIDTH, HAL_MAX_DELAY); } } void OLED_Init(void) { HAL_Delay(100); // 上电延时,确保OLED电源稳定 OLED_WriteCommand(0xAE); // 1. 显示关闭 OLED_WriteCommand(0xD5); // 2. 设置显示时钟分频/振荡频率 OLED_WriteCommand(0x80); // 分频因子&振荡频率设置,0x80默认 OLED_WriteCommand(0xA8); // 3. 设置多路复用比 OLED_WriteCommand(0x3F); // 64行 (0x3F) OLED_WriteCommand(0xD3); // 4. 设置显示偏移 OLED_WriteCommand(0x00); // 无偏移 OLED_WriteCommand(0x40); // 5. 设置显示开始行 (0) OLED_WriteCommand(0x8D); // 6. 电荷泵设置 OLED_WriteCommand(0x14); // 开启电荷泵 OLED_WriteCommand(0x20); // 7. 内存地址模式 OLED_WriteCommand(0x02); // 页地址模式 (Page Mode) OLED_WriteCommand(0xA1); // 8. 列地址重映射 (A0->A1 左右翻转) OLED_WriteCommand(0xC8); // 9. 行扫描方向翻转 (上下翻转) OLED_WriteCommand(0xDA); // 10. COM 引脚配置 OLED_WriteCommand(0x12); // COM配置 (0x12 for 64行) OLED_WriteCommand(0x81); // 11. 对比度设置 OLED_WriteCommand(0x7F); // 对比度值 (0x7F) OLED_WriteCommand(0xD9); // 12. 预充电周期 OLED_WriteCommand(0xF1); // 设置为 0xF1 OLED_WriteCommand(0xDB); // 13. 设置 VCOMH 电平 OLED_WriteCommand(0x40); // 0x40 默认 OLED_WriteCommand(0xA4); // 14. 取消全显示,按照RAM内容显示 OLED_WriteCommand(0xA6); // 15. 正常显示 (非反相) OLED_WriteCommand(0xAF); // 16. 开启显示 } //OLED_DrawPixel(x, y, color) : 绘制单个像素到缓冲区 void OLED_DrawPixel(uint8_t x, uint8_t y, uint8_t color) { if (x >= OLED_WIDTH || y >= OLED_HEIGHT) return; // 越界保护 uint16_t index = (y / 8) * OLED_WIDTH + x; uint8_t bit = y % 8; if (color) OLED_Buffer[index] |= (1 << bit); // 置位 else OLED_Buffer[index] &= ~(1 << bit); // 清位 } void OLED_DrawChar(uint8_t x, uint8_t y, char chr, uint8_t color) { if (chr < 0x20 || chr > 0x7E) chr = '?'; // 非可显示字符用 '?' 代替 uint8_t index = chr - 0x20; // 每个字符宽6 for (uint8_t col = 0; col < 6; col++) { uint8_t lineBits = font6x8[index][col]; // lineBits的每个位对应该列的像素,从字模取出 for (uint8_t bit = 0; bit < 8; bit++) { uint8_t pixelColor = (lineBits >> bit) & 0x1; // 取该位 if (!color) pixelColor = !pixelColor; // 如果color=0黑底白字,可取反 OLED_DrawPixel(x + col, y + bit, pixelColor); } } } //OLED_ShowString(x, y, *str, font, color) : 从指定位置开始显示字符串。 void OLED_ShowString(uint8_t x, uint8_t y, const char *str, uint8_t color) { while (*str) { OLED_DrawChar(x, y, *str, color); x += 6; // 移动光标6列(字体宽度) if (x + 6 > OLED_WIDTH) { x = 0; // 换行到头 y += 8; // 下移一页(8像素高) } if (y >= OLED_HEIGHT) { break; // 超出屏幕则退出 } str++; } } //画线 void OLED_DrawLine(int x0, int y0, int x1, int y1, uint8_t color) { if (x0 == x1 && y0 == y1) { OLED_DrawPixel(x0, y0, color); return; } int dx = (x1 > x0 ? x1 - x0 : x0 - x1); int dy = (y1 > y0 ? y0 - y1 : y1 - y0); int sx = x0 < x1 ? 1 : -1; int sy = y0 < y1 ? 1 : -1; int err = dx + dy; // 注意dy已取负 while (1) { OLED_DrawPixel(x0, y0, color); if (x0 == x1 && y0 == y1) break; int e2 = 2 * err; if (e2 >= dy) { err += dy; x0 += sx; } if (e2 <= dx) { err += dx; y0 += sy; } } } //画矩形 void OLED_DrawRectangle(int x, int y, int width, int height, uint8_t color) { // 绘制矩形的四条边 OLED_DrawLine(x, y, x + width - 1, y, color); // 上边 OLED_DrawLine(x, y + height - 1, x + width - 1, y + height - 1, color); // 下边 OLED_DrawLine(x, y, x, y + height - 1, color); // 左边 OLED_DrawLine(x + width - 1, y, x + width - 1, y + height - 1, color); // 右边 } //画圆 void OLED_DrawCircle(int x0, int y0, int r, uint8_t color) { int a = 0; int b = r; int d = 1 - r; // 判定参数 while (a <= b) { // 八个对称点 OLED_DrawPixel(x0 + a, y0 + b, color); OLED_DrawPixel(x0 - a, y0 + b, color); OLED_DrawPixel(x0 + a, y0 - b, color); OLED_DrawPixel(x0 - a, y0 - b, color); OLED_DrawPixel(x0 + b, y0 + a, color); OLED_DrawPixel(x0 - b, y0 + a, color); OLED_DrawPixel(x0 + b, y0 - a, color); OLED_DrawPixel(x0 - b, y0 - a, color); a++; if (d < 0) { d += 2 * a + 1; } else { b--; d += 2 * (a - b) + 1; } } } //void OLED_DrawSquareWave(int x_start, int y_center, int height, float frequency, float duty_cycle) //{ // for(int page = 4; page < 8; page++) // { // memset(&OLED_Buffer[page * OLED_WIDTH], 0x00, OLED_WIDTH); // } // if (frequency <= 0.0f) return; // if (duty_cycle <= 0.0f) duty_cycle = 0.0f; // 边界保护 // if (duty_cycle >= 100.0f) duty_cycle = 100.0f; // 边界保护 // int y_high = y_center - height / 2; // 高电平 Y 坐标 // int y_low = y_center + height / 2; // 低电平 Y 坐标 // int x_end = OLED_WIDTH; // 绘制到屏幕右侧 // int width = x_end - x_start; // 绘制区域总宽度 // int num_cycles = 2; // // int cycle_width = width / num_cycles; // int high_width = (int)((float)cycle_width * (duty_cycle / 100.0f)); // int low_width = cycle_width - high_width; // // if (duty_cycle > 0.0f && high_width == 0) high_width = 1; // if (duty_cycle < 100.0f && low_width == 0) low_width = 1; // // int current_x = x_start; // for (int cycle = 0; cycle < num_cycles; cycle++) // { // int x_start_cycle = current_x; // // OLED_DrawLine(current_x, y_high, current_x + high_width - 1, y_high, wave_color); // current_x += high_width; // // if (duty_cycle > 0.0f && duty_cycle < 100.0f) { // OLED_DrawLine(current_x - 1, y_high, current_x - 1, y_low, wave_color); // } // OLED_DrawLine(current_x, y_low, current_x + low_width - 1, y_low, wave_color); // current_x += low_width; // // if (duty_cycle > 0.0f && duty_cycle < 100.0f) { // OLED_DrawLine(current_x - 1, y_low, current_x - 1, y_high, wave_color); // } // // if (current_x >= x_end) break; // } //} void OLED_UpdateWaveform(void) { static uint32_t last_draw_time = 0; uint32_t now = HAL_GetTick(); // 控制刷新率:~50Hz if (now - last_draw_time < 20) return; last_draw_time = now; float t = now / 1000.0f; // 时间(秒) float freq = (float)current_freq; float duty = (float)current_duty / 100.0f; // 计算当前应显示的电平状态 float phase = fmodf(t * freq, 1.0f); uint8_t is_high = (phase < duty) ? 1 : 0; // 波形显示区域(垂直方向) const int y_center = 48; const int height = 16; const int y_top = y_center - height / 2; // y=40 const int y_bottom = y_center + height / 2; // y=56 // === 步骤1:整体左移一列(关键!避免“方块”)=== for (int y = y_top; y <= y_bottom; y++) { for (int x = 0; x < OLED_WIDTH - 1; x++) { uint8_t pixel = OLED_GetPixel(x + 1, y); OLED_DrawPixel(x, y, pixel); // 把右边的像素移到左边 } } // === 步骤2:在最右侧绘制新点(当前时刻电平)=== for (int y = y_top; y <= y_bottom; y++) { OLED_DrawPixel(OLED_WIDTH - 1, y, is_high ? 1 : 0); } // === 步骤3:仅刷新受影响的页面(page 5~7 对应 y=40~63)=== for (uint8_t page = 5; page <= 7; page++) { OLED_WriteCommand(0xB0 + page); // 设置页地址 OLED_WriteCommand(0x00); // 低列地址 OLED_WriteCommand(0x10); // 高列地址 HAL_I2C_Mem_Write(&hi2c1, OLED_I2C_ADDR, 0x40, I2C_MEMADD_SIZE_8BIT, &OLED_Buffer[page * OLED_WIDTH], OLED_WIDTH, HAL_MAX_DELAY); } } void OLED_SetWaveParams(float freq, float duty_cycle) { target_frequency = freq; target_duty_cycle = duty_cycle; } void OLED_UpdateText(void) { for (uint8_t page = 0; page < 4; page++) // page 0~3 对应 y=0~31 { OLED_WriteCommand(0xB0 + page); // 设置页地址 OLED_WriteCommand(0x00); // 低列地址 OLED_WriteCommand(0x10); // 高列地址 HAL_I2C_Mem_Write(&hi2c1, OLED_I2C_ADDR, 0x40, I2C_MEMADD_SIZE_8BIT, &OLED_Buffer[page * OLED_WIDTH], OLED_WIDTH, HAL_MAX_DELAY); } } #include "vofa.h" #include <stdio.h> #include "main.h" #include "math.h" //void Send_SquareWave_VOFA(void) //{ // float t = HAL_GetTick() * 0.001f; // float freq = (float)current_freq; // float duty_cycle = (float)current_duty / 100.0f; // // 计算当前相位 // float phase = fmodf(t * freq, 1.0f); // float pwm_val = (phase < duty_cycle) ? 1.0f : 0.0f; // // 发送给VOFA+ // printf("%.3f\n", pwm_val); // 单通道模式下只需输出一个值 //} void Send_SquareWave_VOFA(void) { float t = HAL_GetTick() * 0.001f; // 当前时间(秒) float freq = (float)current_freq; // 频率(Hz) float duty_cycle = (float)current_duty / 100.0f; // 占空比(0~1) // 计算当前相位并生成 PWM 信号 float phase = fmodf(t * freq, 1.0f); float pwm_val = (phase < duty_cycle) ? 1.0f : 0.0f; // 同时发送 PWM 波形、频率、占空比(三通道) printf("%.3f,%.3f,%.3f\n", pwm_val, freq, duty_cycle); } 为什么我的方波一直是方块型的,不是波形的,而且无法在vofa上进行回答,在串口助手上可以
最新发布
11-27
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值