mapreduce



[dev@cdh1 python]$ vim genWordCount.py
import random
list =[]
lineNum=0
with open("wordcount.txt","a") as w:
    for i in range(5000000):
        apply = random.randint(3, 10)
        word=''
        for k in range(10):
           for i in range(apply):
               ij = random.randint(65,90) + random.randint(0,1) *32
               word= word + chr(ij)
           word=word+' '
        line =  "%s\n"  % word
        list.append(line)
        lineNum=lineNum+1
        if lineNum==100000:
            w.writelines(list)
            list=[]
            lineNum=0
    w.writelines(list)
print ("0k")



[dev@cdh1 python]$ more wordcount.txt 
OwYVu FZFmf rcTfN hfJPd ktudT kaFSe qnuPb dUBwk LnNyB ccAUP 
Myi xXt eSK ANw bkS VMD Qsm BaK RcN CHs 
vvaDwZJLq XAMdQfThL sGUTdChFo KQdUSauwp nXCWfjTQW xrjtiDVjh rdrUAQFFS fqzhSZjfC DhRrUOnMk HtxsgNXFg 
OhRsZyMAJh qklXriwJCu TgwhmNgbdO EKKYqnAXCK qiPsprOfnf oShHouQBRJ PsvrtsfDfx NJOhGVEtxe RNBVqMrXol RhxgFhXAre 
psR NuZ RwB Ngi NLo KEN rbz MLA YVK MrX 
uUgUEvAEkR uvfMfRHwHy TRFDbrMRVP xYMcmuvlyr dIfwBmMXuE eCNHRWlehQ gphcRCupFa jxVXdCdgCu RTMGMawYUx TSjXsamBAy 
euwT nTOv jLuP wnUh KOpT RLsM TpdN hqHN hsPa VFEx 
JqgVRqI vCTuWLB aHmCreQ zSbYaOq gFBzOXN LCxjYaL bAjWEQM tFOOLSl HgVYXAj SnsDELu 
XQzE gLyB dfpj CuCU KGjZ PyMz Fsox hOUn drZC eNRB 
XszjlJ ObBEqB QCXYAm qoLIWP AZXsuU knUYAd SAhmrH ioHSLu wymRUO NuzeAa 
dikK Kmdb YQNH nifO yVAy rFzz iIUH cWtm PJHF Dcti 
YJLKPr xYgsom oQKlxq dThhgR CYyFqD RYjSHp cfwkpp aypUIy JxBmtZ udQhkW 
psZsnAiA lnSpkbdB sXmepqIh hCOxkcEu LBrDzoDM SZatqPHI tqhPfzyI ZHdyMKuK NGydGlyz bTtWMZnJ 
wqXV iCnN yFSX dEkc XQOs TjGE VbWI AvSq hYxI OrZq 
Jrqevc dRxuQw NBXGPE GaoWhr rsYOZu OMafgd gKKqak XDKKBy tvKiyo SPXRxk 
uEQrSYqiX LJINyYBON NtPnJAeVU FYgcSeOTs kMhyldbte iySsQshxQ JWZbtmPqH MMoUvnalo OKiUctOjH jfpMUAxml 
vQv tkn Txo JaA xJt dUY Wgi rJs GWP jKu 
......



[dev@cdh1 python]$ ll
-rw-rw-r-- 1 dev dev 380015680 3月   8 17:35 wordcount.txt



[dev@cdh1 hadoop-mapreduce]$ find / -name hadoop-mapreduce 2>/dev/null
/home/cdh/cloudera/parcels/CDH-5.13.0-1.cdh5.13.0.p0.29/lib/hadoop-mapreduce
/home/log/hadoop-mapreduce
/var/lib/hadoop-mapreduce

[dev@cdh1 hadoop-mapreduce]$ hadoop fs -mkdir -p /test/wordcount
[dev@cdh1 hadoop-mapreduce]$ hadoop fs -mkdir -p /output


[dev@cdh1 hadoop-mapreduce]$ hadoop fs -put wordcount.txt /test/wordcount


hdfs dfs -rmdir /output/wordcount


[dev@cdh1 python]$ hadoop jar /home/cdh/cloudera/parcels/CDH-5.13.0-1.cdh5.13.0.p0.29/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar  wordcount  /test/wordcount /output/wordcount
19/03/08 17:49:27 INFO client.RMProxy: Connecting to ResourceManager at cdh1/10.3.1.8:8032
19/03/08 17:49:28 INFO input.FileInputFormat: Total input paths to process : 1
19/03/08 17:49:28 INFO mapreduce.JobSubmitter: number of splits:3
19/03/08 17:49:31 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1544093812828_13063
19/03/08 17:49:32 INFO impl.YarnClientImpl: Submitted application application_1544093812828_13063
19/03/08 17:49:32 INFO mapreduce.Job: The url to track the job: http://cdh1:8088/proxy/application_1544093812828_13063/
19/03/08 17:49:32 INFO mapreduce.Job: Running job: job_1544093812828_13063
19/03/08 17:49:38 INFO mapreduce.Job: Job job_1544093812828_13063 running in uber mode : false
19/03/08 17:49:38 INFO mapreduce.Job:  map 0% reduce 0%
19/03/08 17:49:55 INFO mapreduce.Job:  map 24% reduce 0%
19/03/08 17:49:57 INFO mapreduce.Job:  map 38% reduce 0%
19/03/08 17:50:06 INFO mapreduce.Job:  map 56% reduce 0%
19/03/08 17:50:10 INFO mapreduce.Job:  map 60% reduce 0%
19/03/08 17:50:13 INFO mapreduce.Job:  map 61% reduce 0%
19/03/08 17:50:16 INFO mapreduce.Job:  map 66% reduce 0%
19/03/08 17:50:25 INFO mapreduce.Job:  map 67% reduce 0%
19/03/08 17:50:28 INFO mapreduce.Job:  map 73% reduce 0%
19/03/08 17:50:31 INFO mapreduce.Job:  map 96% reduce 0%
19/03/08 17:50:37 INFO mapreduce.Job:  map 100% reduce 0%
19/03/08 17:50:53 INFO mapreduce.Job:  map 100% reduce 51%
19/03/08 17:50:59 INFO mapreduce.Job:  map 100% reduce 62%
19/03/08 17:51:05 INFO mapreduce.Job:  map 100% reduce 69%
19/03/08 17:51:11 INFO mapreduce.Job:  map 100% reduce 76%
19/03/08 17:51:18 INFO mapreduce.Job:  map 100% reduce 82%
19/03/08 17:51:24 INFO mapreduce.Job:  map 100% reduce 88%
19/03/08 17:51:30 INFO mapreduce.Job:  map 100% reduce 93%
19/03/08 17:51:36 INFO mapreduce.Job:  map 100% reduce 100%
19/03/08 17:51:38 INFO mapreduce.Job: Job job_1544093812828_13063 completed successfully
19/03/08 17:51:39 INFO mapreduce.Job: Counters: 49
	File System Counters
		FILE: Number of bytes read=679531081
		FILE: Number of bytes written=1019514163
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=380147082
		HDFS: Number of bytes written=423790270
		HDFS: Number of read operations=12
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=2
	Job Counters 
		Launched map tasks=3
		Launched reduce tasks=1
		Data-local map tasks=3
		Total time spent by all maps in occupied slots (ms)=650992
		Total time spent by all reduces in occupied slots (ms)=230552
		Total time spent by all map tasks (ms)=162748
		Total time spent by all reduce tasks (ms)=57638
		Total vcore-milliseconds taken by all map tasks=162748
		Total vcore-milliseconds taken by all reduce tasks=57638
		Total megabyte-milliseconds taken by all map tasks=1666539520
		Total megabyte-milliseconds taken by all reduce tasks=590213120
	Map-Reduce Framework
		Map input records=5000000
		Map output records=50000000
		Map output bytes=575015680
		Map output materialized bytes=339394577
		Input split bytes=330
		Combine input records=81437418
		Combine output records=75023053
		Reduce input groups=41797229
		Reduce shuffle bytes=339394577
		Reduce input records=43585635
		Reduce output records=41797229
		Spilled Records=131625864
		Shuffled Maps =3
		Failed Shuffles=0
		Merged Map outputs=3
		GC time elapsed (ms)=2315
		CPU time spent (ms)=305710
		Physical memory (bytes) snapshot=10213470208
		Virtual memory (bytes) snapshot=43881082880
		Total committed heap usage (bytes)=15340142592
	Shuffle Errors
		BAD_ID=0
		CONNECTION=0
		IO_ERROR=0
		WRONG_LENGTH=0
		WRONG_MAP=0
		WRONG_REDUCE=0
	File Input Format Counters 
		Bytes Read=380146752
	File Output Format Counters 
		Bytes Written=423790270

		


[dev@cdh1 python]$ hadoop fs -ls /output/wordcount
Found 2 items
-rw-r--r--   3 dev supergroup          0 2019-03-08 17:51 /output/wordcount/_SUCCESS
-rw-r--r--   3 dev supergroup  423790270 2019-03-08 17:51 /output/wordcount/part-r-00000


[dev@cdh1 python]$ hadoop fs -text /output/wordcount/part-r-00000|head -20
AAA	50
AAAAWWm	1
AAAAY	1
AAAAZ	1
AAAAg	1
AAAB	4
AAABbJUK	1
AAABoUvdAd	1
AAAC	2
AAACDYgt	1
AAACEZQ	1
AAACSY	1
AAACxfUj	1
AAACyn	1
AAAD	1
AAADpauX	1
AAADu	1
AAADuVgje	1
AAADwUf	1
AAAE	2



[dev@cdh1 python]$ hadoop fsck /test/wordcount/wordcount.txt -files -blocks -locations
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

Connecting to namenode via http://cdh1:50070/fsck?ugi=dev&files=1&blocks=1&locations=1&path=%2Ftest%2Fwordcount%2Fwordcount.txt
FSCK started by dev (auth:SIMPLE) from /10.3.1.8 for path /test/wordcount/wordcount.txt at Fri Mar 08 18:04:57 CST 2019
/test/wordcount/wordcount.txt 380015680 bytes, 3 block(s):  OK
0. BP-1123673671-10.3.1.8-1513763234376:blk_1075796371_2055633 len=134217728 Live_repl=3 [DatanodeInfoWithStorage[10.3.1.9:50010,DS-36a9eb13-f4a3-4ba8-bf84-a53e081ebb89,DISK], DatanodeInfoWithStorage[10.3.1.14:50010,DS-c2ae84aa-516f-4e1f-b255-76a00a7cc0f2,DISK], DatanodeInfoWithStorage[10.3.1.13:50010,DS-cf291cd2-a872-490d-8c70-52f6ce58399a,DISK]]
1. BP-1123673671-10.3.1.8-1513763234376:blk_1075796377_2055639 len=134217728 Live_repl=3 [DatanodeInfoWithStorage[10.3.1.14:50010,DS-c2ae84aa-516f-4e1f-b255-76a00a7cc0f2,DISK], DatanodeInfoWithStorage[10.3.1.9:50010,DS-36a9eb13-f4a3-4ba8-bf84-a53e081ebb89,DISK], DatanodeInfoWithStorage[10.3.1.13:50010,DS-cf291cd2-a872-490d-8c70-52f6ce58399a,DISK]]
2. BP-1123673671-10.3.1.8-1513763234376:blk_1075796378_2055640 len=111580224 Live_repl=3 [DatanodeInfoWithStorage[10.3.1.14:50010,DS-c2ae84aa-516f-4e1f-b255-76a00a7cc0f2,DISK], DatanodeInfoWithStorage[10.3.1.9:50010,DS-36a9eb13-f4a3-4ba8-bf84-a53e081ebb89,DISK], DatanodeInfoWithStorage[10.3.1.13:50010,DS-cf291cd2-a872-490d-8c70-52f6ce58399a,DISK]]
Status: HEALTHY
 Total size:	380015680 B
 Total dirs:	0
 Total files:	1
 Total symlinks:		0
 Total blocks (validated):	3 (avg. block size 126671893 B)
 Minimally replicated blocks:	3 (100.0 %)
 Over-replicated blocks:	0 (0.0 %)
 Under-replicated blocks:	0 (0.0 %)
 Mis-replicated blocks:		0 (0.0 %)
 Default replication factor:	3
 Average block replication:	3.0
 Corrupt blocks:		0
 Missing replicas:		0 (0.0 %)
 Number of data-nodes:		3
 Number of racks:		1
FSCK ended at Fri Mar 08 18:04:57 CST 2019 in 0 milliseconds
The filesystem under path '/test/wordcount/wordcount.txt' is HEALTHY


[dev@cdh1 python]$ hadoop fsck /output/wordcount/part-r-00000 -files -blocks -locations
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

Connecting to namenode via http://cdh1:50070/fsck?ugi=dev&files=1&blocks=1&locations=1&path=%2Foutput%2Fwordcount%2Fpart-r-00000
FSCK started by dev (auth:SIMPLE) from /10.3.1.8 for path /output/wordcount/part-r-00000 at Fri Mar 08 18:03:42 CST 2019
/output/wordcount/part-r-00000 423790270 bytes, 4 block(s):  OK
0. BP-1123673671-10.3.1.8-1513763234376:blk_1075796393_2055655 len=134217728 Live_repl=3 [DatanodeInfoWithStorage[10.3.1.14:50010,DS-c2ae84aa-516f-4e1f-b255-76a00a7cc0f2,DISK], DatanodeInfoWithStorage[10.3.1.9:50010,DS-36a9eb13-f4a3-4ba8-bf84-a53e081ebb89,DISK], DatanodeInfoWithStorage[10.3.1.13:50010,DS-cf291cd2-a872-490d-8c70-52f6ce58399a,DISK]]
1. BP-1123673671-10.3.1.8-1513763234376:blk_1075796394_2055656 len=134217728 Live_repl=3 [DatanodeInfoWithStorage[10.3.1.14:50010,DS-c2ae84aa-516f-4e1f-b255-76a00a7cc0f2,DISK], DatanodeInfoWithStorage[10.3.1.13:50010,DS-cf291cd2-a872-490d-8c70-52f6ce58399a,DISK], DatanodeInfoWithStorage[10.3.1.9:50010,DS-36a9eb13-f4a3-4ba8-bf84-a53e081ebb89,DISK]]
2. BP-1123673671-10.3.1.8-1513763234376:blk_1075796395_2055657 len=134217728 Live_repl=3 [DatanodeInfoWithStorage[10.3.1.14:50010,DS-c2ae84aa-516f-4e1f-b255-76a00a7cc0f2,DISK], DatanodeInfoWithStorage[10.3.1.9:50010,DS-36a9eb13-f4a3-4ba8-bf84-a53e081ebb89,DISK], DatanodeInfoWithStorage[10.3.1.13:50010,DS-cf291cd2-a872-490d-8c70-52f6ce58399a,DISK]]
3. BP-1123673671-10.3.1.8-1513763234376:blk_1075796396_2055658 len=21137086 Live_repl=3 [DatanodeInfoWithStorage[10.3.1.14:50010,DS-c2ae84aa-516f-4e1f-b255-76a00a7cc0f2,DISK], DatanodeInfoWithStorage[10.3.1.13:50010,DS-cf291cd2-a872-490d-8c70-52f6ce58399a,DISK], DatanodeInfoWithStorage[10.3.1.9:50010,DS-36a9eb13-f4a3-4ba8-bf84-a53e081ebb89,DISK]]
Status: HEALTHY
 Total size:	423790270 B
 Total dirs:	0
 Total files:	1
 Total symlinks:		0
 Total blocks (validated):	4 (avg. block size 105947567 B)
 Minimally replicated blocks:	4 (100.0 %)
 Over-replicated blocks:	0 (0.0 %)
 Under-replicated blocks:	0 (0.0 %)
 Mis-replicated blocks:		0 (0.0 %)
 Default replication factor:	3
 Average block replication:	3.0
 Corrupt blocks:		0
 Missing replicas:		0 (0.0 %)
 Number of data-nodes:		3
 Number of racks:		1
FSCK ended at Fri Mar 08 18:03:42 CST 2019 in 1 milliseconds
The filesystem under path '/output/wordcount/part-r-00000' is HEALTHY



 

内容概要:本文深入探讨了Kotlin语言在函数式编程和跨平台开发方面的特性和优势,结合详细的代码案例,展示了Kotlin的核心技巧和应用场景。文章首先介绍了高阶函数和Lambda表达式的使用,解释了它们如何简化集合操作和回调函数处理。接着,详细讲解了Kotlin Multiplatform(KMP)的实现方式,包括共享模块的创建和平台特定模块的配置,展示了如何通过共享业务逻辑代码提高开发效率。最后,文章总结了Kotlin在Android开发、跨平台移动开发、后端开发和Web开发中的应用场景,并展望了其未来发展趋势,指出Kotlin将继续在函数式编程和跨平台开发领域不断完善和发展。; 适合人群:对函数式编程和跨平台开发感兴趣的开发者,尤其是有一定编程基础的Kotlin初学者和中级开发者。; 使用场景及目标:①理解Kotlin中高阶函数和Lambda表达式的使用方法及其在实际开发中的应用场景;②掌握Kotlin Multiplatform的实现方式,能够在多个平台上共享业务逻辑代码,提高开发效率;③了解Kotlin在不同开发领域的应用场景,为选择合适的技术栈提供参考。; 其他说明:本文不仅提供了理论知识,还结合了大量代码案例,帮助读者更好地理解和实践Kotlin的函数式编程特性和跨平台开发能力。建议读者在学习过程中动手实践代码案例,以加深理解和掌握。
内容概要:本文深入探讨了利用历史速度命令(HVC)增强仿射编队机动控制性能的方法。论文提出了HVC在仿射编队控制中的潜在价值,通过全面评估HVC对系统的影响,提出了易于测试的稳定性条件,并给出了延迟参数与跟踪误差关系的显式不等式。研究为两轮差动机器人(TWDRs)群提供了系统的协调编队机动控制方案,并通过9台TWDRs的仿真和实验验证了稳定性和综合性能改进。此外,文中还提供了详细的Python代码实现,涵盖仿射编队控制类、HVC增强、稳定性条件检查以及仿真实验。代码不仅实现了论文的核心思想,还扩展了邻居历史信息利用、动态拓扑优化和自适应控制等性能提升策略,更全面地反映了群体智能协作和性能优化思想。 适用人群:具备一定编程基础,对群体智能、机器人编队控制、时滞系统稳定性分析感兴趣的科研人员和工程师。 使用场景及目标:①理解HVC在仿射编队控制中的应用及其对系统性能的提升;②掌握仿射编队控制的具体实现方法,包括控制器设计、稳定性分析和仿真实验;③学习如何通过引入历史信息(如HVC)来优化群体智能系统的性能;④探索中性型时滞系统的稳定性条件及其在实际系统中的应用。 其他说明:此资源不仅提供了理论分析,还包括完整的Python代码实现,帮助读者从理论到实践全面掌握仿射编队控制技术。代码结构清晰,涵盖了从初始化配置、控制律设计到性能评估的各个环节,并提供了丰富的可视化工具,便于理解和分析系统性能。通过阅读和实践,读者可以深入了解HVC增强仿射编队控制的工作原理及其实际应用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值