数据结构--最大子列和

最好想的一种方法
穷举所有可能

int maxSubSum1(int a[],int size ) 
{
    int maxSum = 0;
    for ( int i = 0; i < size; i++ )
        for ( int j = 1; j < size; j++ ) 
        {
             int thisSum = 0;
             for ( int k = i; k <= j; k++ )
                 thisSum += a[k];
             if ( thisSum > maxSum )
                maxSum = thisSum;
        }
    return maxSum;
}

同样是穷举,但是对算法进行了优化

int max_sub(int a[],int size)
{
  int i,j,v;
    int max=a[0];
  for(i=0;i<size;i++)
  {
    v=0;
    for(j=i;j<size;j++)
    {
      v=v+a[j];         //Sum(i, j+1) = Sum(i, j) + A[j+1]
      if(v>max)  max=v;
    }
  }
  return max;
}

分而治之
如果时间复杂度不能达到O(n),这是最优方法

/**
 * Recursive maximum contiguous subsequence sum algorithm.
 * Finds maximum sum in subarray spanning a[left..right].
 * Does not attempt to maintain actual best sequence.
 */
int maxSumRec( const vector<int> & a, int left, int right )
{
    if( left == right )  // Base case
        if( a[ left ] > 0 )
            return a[ left ];
        else
            return 0;
    int center = ( left + right ) / 2;
    int maxLeftSum  = maxSumRec( a, left, center );
    int maxRightSum = maxSumRec( a, center + 1, right );
    int maxLeftBorderSum = 0, leftBorderSum = 0;
    for( int i = center; i >= left; i-- )
    {
        leftBorderSum += a[ i ];
        if( leftBorderSum > maxLeftBorderSum )
            maxLeftBorderSum = leftBorderSum;
    }
    int maxRightBorderSum = 0, rightBorderSum = 0;
    for( int j = center + 1; j <= right; j++ )
    {
        rightBorderSum += a[ j ];
        if( rightBorderSum > maxRightBorderSum )
            maxRightBorderSum = rightBorderSum;
    }
    return max3( maxLeftSum, maxRightSum, maxLeftBorderSum + maxRightBorderSum );
}

/**
 * Driver for divide-and-conquer maximum contiguous
 * subsequence sum algorithm.
 */
int maxSubSum3( const vector<int> & a )
{
    return maxSumRec( a, 0, a.size( ) - 1 );
}

最完美的算法,起时间复杂度达到了o(n)

int max_sub2(int a[], int size)
{
  int i,max=0,temp_sum=0;
  for(i=0;i<size;i++)
  {
      temp_sum+=a[i];
      if(temp_sum>max)
        max=temp_sum;
      else if(temp_sum<0)
        temp_sum=0;
  }
  return max;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值