Spark SQL操作外部数据源之Hive

贴个图记录一下
在这里插入图片描述
在这里插入图片描述

-- 查询所有表
scala> spark.sql("show tables").show
-- 查询‘emp’表数据
scala> spark.table("emp").show
-- 统计每个部门的人数
scala> spark.sql("select deptno,count(1) num from emp group by deptno").show
-- 将统计结果导出到‘emp_count_dept’表
scala> spark.sql("select deptno,count(1) num from emp group by deptno").write.saveAsTable("emp_count_dept")
-- 查询‘emp_count_dept’表数据
scala> spark.table("emp_count_dept").show

注意,这个时候我们通过页面可以看到这个Task有一个200的参数,其实这是由一个属性spark.sql.shuffle.partitions配置的,默认值就是200,含义是在shuffle或aggregations时partitions的值,可以根据服务器的实际参数进行调整,在生产中尤其要注意。
在这里插入图片描述
在这里插入图片描述
在这里我们把它设置为10,命令是sparkSession.sqlContext.setConf("spark.sql.shuffle.partitions", "10")
在这里插入图片描述
在这里插入图片描述

### 回答1: Spark SQL可以通过DataFrame API或SQL语句来操作外部数据源,包括parquet、hive和mysql等。其中,parquet是一种列式存储格式,可以高效地存储和查询大规模数据;hive是一种基于Hadoop的数据仓库,可以通过Spark SQL来查询和分析;而mysql是一种常见的关系型数据库,可以通过Spark SQL来读取和写入数据。在使用Spark SQL操作外部数据源时,需要先创建DataFrame或注册表,然后通过API或SQL语句来进行数据的读取、过滤、聚合等操作。同时,还可以通过Spark SQL的连接器来实现不同数据源之间的数据传输和转换。 ### 回答2: Spark SQL 是 Apache Spark 中的一个模块,用于在大规模数据集上进行结构化数据处理。它支持多种数据源,并提供了访问、查询和操作这些数据源的功能。 对于外部数据源操作Spark SQL 提供了适配器和驱动程序来连接不同的数据源。下面简单介绍一下对于三种常见的数据源(Parquet、Hive、MySQL)的操作方式: 1. Parquet:Parquet 是一种列式存储格式,适用于大规模数据存储和分析。对于 Parquet 数据源Spark SQL 提供了原生的支持,你可以直接使用 `spark.read.parquet()` 方法读取 Parquet 文件,并通过 `write.parquet()` 方法写入 Parquet 文件。Spark SQL 会自动推断 Parquet 文件的模式(schema),你也可以通过指定模式参数来指定具体的模式。 2. HiveHive 是一个数据仓库基础设施,可以在 Hadoop 上进行数据仓库的处理和查询。Spark SQL 可以与 Hive 结合使用,使用 Hive 提供的 metastore 来管理表和模式,通过 HiveQL(Hive 查询语言)来查询和操作 Hive 数据。你可以通过 `spark.sql()` 方法来执行 HiveQL 查询,也可以使用 `registerTempTable()` 方法将一个 Spark DataFrame 注册为一个临时表,然后通过 SQL 语句查询这个临时表。 3. MySQL:MySQL 是一种关系型数据库管理系统,Spark SQL 也可以与 MySQL 进行集成。首先,需要在 Spark 中导入相应的 MySQL 驱动程序,例如 "com.mysql.jdbc.Driver"。然后,通过 `spark.read.format("jdbc")` 方法来读取 MySQL 数据库中的表,你需要指定连接 URL、表名、用户名和密码等参数。使用相同的方式,你也可以将 Spark DataFrame 写入到 MySQL 数据库中。 总结起来,Spark SQL 对于 Parquet、Hive 和 MySQL 这些外部数据源都提供了直接的支持和集成。通过适配器和驱动程序,你可以使用 Spark SQL 的 API 和功能来读取、写入、查询和操作这些外部数据源中的数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值