地址:http://acm.hdu.edu.cn/showproblem.php?pid=3709
Balanced Number
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Problem Description
A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. More specifically, imagine each digit as a box with weight indicated by the digit. When a pivot is placed at some digit of the number, the distance from a digit to the pivot is the offset between it and the pivot. Then the torques of left part and right part can be calculated. It is balanced if they are the same. A balanced number must be balanced with the pivot at some of its digits. For example, 4139 is a balanced number with pivot fixed at 3. The torqueses are 4*2 + 1*1 = 9 and 9*1 = 9, for left part and right part, respectively. It's your job
to calculate the number of balanced numbers in a given range [x, y].
to calculate the number of balanced numbers in a given range [x, y].
Input
The input contains multiple test cases. The first line is the total number of cases T (0 < T ≤ 30). For each case, there are two integers separated by a space in a line, x and y. (0 ≤ x ≤ y ≤ 10
18).
Output
For each case, print the number of balanced numbers in the range [x, y] in a line.
Sample Input
2 0 9 7604 24324
Sample Output
10 897
思路:以位数、中心的位置、右边减左边的数值这三个性质为三维打表。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define LL __int64 //注意使用int64
LL dp[20][20][1800];
int len1[20];
LL dfs(int len,int zhou,int sum,bool mz) //len指数位,zhou指中心,sum指右减左,mz指是否达到上限
{
if(!len) return sum?0:1;
if(sum<0) return 0; //如果sum<0,说明再往后也不行
if(!mz&&dp[len][zhou][sum]!=-1) return dp[len][zhou][sum];
int maxx=mz?len1[len]:9;
LL ans=0;
for(int i=0;i<=maxx;i++)
ans+=dfs(len-1,zhou,sum+i*(len-zhou),mz&&i==maxx);
if(!mz) dp[len][zhou][sum]=ans;
return ans;
}
LL getans(LL m)
{
if(m<0) return 0;
LL len=1;
while(m)
{
len1[len++]=m%10;
m/=10;
}
LL ans=0;
for(int i=len-1;i>0;i--)
ans+=dfs(len-1,i,0,1);
return ans-len+2; //"-len+2"是因为0与00、000···相同
}
int main()
{
memset(dp,-1,sizeof(dp));
int t;
LL l,r;
scanf("%d",&t);
while(t--)
{
scanf("%I64d%I64d",&l,&r);
printf("%I64d\n",getans(r)-getans(l-1)); //这里是r与l-1,不是以前打表时的r+1与l
}
}