Multiply
AB=CAB = CAB=C
[a11⋯a1n⋮⋱⋮am1⋯amn][b11⋯b1p⋮⋱⋮bn1⋯bnp]=[c11⋯c1p⋮⋱⋮cm1⋯cmp]
\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn}\end{bmatrix}\begin{bmatrix} b_{11} & \cdots & b_{1p} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{np}\end{bmatrix}=\begin{bmatrix} c_{11} & \cdots & c_{1p} \\ \vdots & \ddots & \vdots \\ c_{m1} & \cdots & c_{mp}\end{bmatrix}
⎣⎢⎡a11⋮am1⋯⋱⋯a1n⋮amn⎦⎥⎤⎣⎢⎡b11⋮bn1⋯⋱⋯b1p⋮bnp⎦⎥⎤=⎣⎢⎡c11⋮cm1⋯⋱⋯c1p⋮cmp⎦⎥⎤
矩阵相乘的5种视角,互相等价
-
常规视角
- cij=∑k=1naikbkjc_{ij} = \sum_{k=1}^n a_{ik}b_{kj}cij=∑k=1naikbkj
-
通过矩阵和向量乘法
-
右乘:C 的每个列向量cj\bold{c}_jcj由A的列向量ak,1≤k≤n\bold{a}_k,1\le k\le nak,1≤k≤n的线性组合构成 cj=∑k=1nbkjak\bold{c}_j = \sum_{k=1}^n b_{kj} \bold{a}_kcj=∑k=1nbkjak
-
左乘:C 的没个行向量ci\bold{c}_ici 由B的行向量bk,1≤k≤p\bold{b}_k,1\le k\le pbk,1≤k≤p的线性组合构成ci=∑k=1paikbk\bold{c}_i=\sum_{k=1}^pa_{ik}\bold{b}_kci=∑k=1paikbk
-
-
AB=∑i(columniOfA)(rowiOfB)AB = \sum_i (column_iOf A)(row_iOf B)AB=∑i(columniOfA)(rowiOfB)
-
By Blocks
Invertibility
左逆矩阵(Left Inverse):
A−1A=IA^{-1}A = IA−1A=I
右逆矩阵(Right Inverse)
AA−1=IAA^{-1}=IAA−1=I
Dependence:
向量V1,V2,..,VnV_1,V_2,..,V_nV1,V2,..,Vn,存在组合非全零实数c1,c2,...,cnc_1, c_2,...,c_nc1,c2,...,cn,满足∑i=1nciVi=0\sum_{i=1}^nc_iV_i = 0∑i=1nciVi=0,则称向量线性相关。
行列式
矩阵行列式的三个性质:
- det(I)=1det(I) = 1det(I)=1
- Exchange rows , reverse sign of determinant
- Linear for each row
∣t∗at∗bcd∣=t∗∣abcd∣\left|\begin{array}{cccc} t*a & t*b \\ c & d \\ \end{array}\right| = t * \left|\begin{array}{cccc} a & b \\ c & d \\ \end{array}\right|∣∣∣∣t∗act∗bd∣∣∣∣=t∗∣∣∣∣acbd∣∣∣∣
∣a+a′b+b′cd∣=∣abcd∣+∣a′b′cd∣\left|\begin{array}{cccc} a + a' & b + b' \\ c & d \\ \end{array}\right| = \left|\begin{array}{cccc} a & b \\ c & d \\ \end{array}\right| + \left|\begin{array}{cccc} a' & b' \\ c & d \\ \end{array}\right|∣∣∣∣a+a′cb+b′d∣∣∣∣=∣∣∣∣acbd∣∣∣∣+∣∣∣∣a′cb′d∣∣∣∣
由此三个性质推导出行列式的以下性质:
- two equal rows => det = 0
- subtract l×rowil\times row_il×rowi from rowjrow_jrowj, det does not change.
∣abc−l∗ad−l∗b∣=∣abcd∣+∣ab−l∗a−l∗b∣\left|\begin{array}{cccc}
a & b \\
c -l*a& d-l*b \\
\end{array}\right| = \left|\begin{array}{cccc}
a & b \\
c & d \\
\end{array}\right| + \left|\begin{array}{cccc}
a & b \\
-l*a & -l*b \\
\end{array}\right|∣∣∣∣ac−l∗abd−l∗b∣∣∣∣=∣∣∣∣acbd∣∣∣∣+∣∣∣∣a−l∗ab−l∗b∣∣∣∣
=∣abcd∣−l∗∣abab∣=∣abcd∣=\left|\begin{array}{cccc}
a & b \\
c & d \\
\end{array}\right| -l * \left|\begin{array}{cccc}
a & b \\
a & b \\
\end{array}\right| = \left|\begin{array}{cccc}
a & b \\
c & d \\
\end{array}\right|=∣∣∣∣acbd∣∣∣∣−l∗∣∣∣∣aabb∣∣∣∣=∣∣∣∣acbd∣∣∣∣
- Row of zeros => det = 0
∣0∗a0∗bcd∣=0∗∣abcd∣=0\left|\begin{array}{cccc} 0*a & 0*b \\ c & d \\ \end{array}\right| = 0 * \left|\begin{array}{cccc} a & b \\ c & d \\ \end{array}\right| = 0∣∣∣∣0∗ac0∗bd∣∣∣∣=0∗∣∣∣∣acbd∣∣∣∣=0
- Trianglar matrix => det=d1∗d2∗d3...dndet = d1*d2*d3...dndet=d1∗d2∗d3...dn
∣d1⋯⋯⋯⋯0d2⋯⋯⋯00d3⋯⋯⋮⋮⋮⋮⋮000⋯dn∣=∏i=1ndi\left|\begin{array}{cccc} d1 & \cdots & \cdots & \cdots & \cdots\\ 0 & d2 & \cdots & \cdots & \cdots\\ 0 & 0 & d3 & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & dn \\ \end{array}\right| = \prod_{i=1}^n di∣∣∣∣∣∣∣∣∣∣∣d100⋮0⋯d20⋮0⋯⋯d3⋮0⋯⋯⋯⋮⋯⋯⋯⋯⋮dn∣∣∣∣∣∣∣∣∣∣∣=i=1∏ndi
-
det = 0 exactly when A is singular(det≠0det\ne 0det=0 when A is invertible)
-
det(AB)=det(A)det(B)det(AB) = det(A)det(B)det(AB)=det(A)det(B)
detA−1=(detA)−1det A^{-1} = (det A)^{-1}detA−1=(detA)−1
detA2=(detA)2det A^2 = (det A)^2detA2=(detA)2
det2A=2ndetAdet 2A = 2^n det Adet2A=2ndetA -
detAT=detAdetA^T = det AdetAT=detA
detAT=detUTLT=detUdetL=detLU=detAdet A^T = det U^TL^T = det U det L = det LU = det AdetAT=detUTLT=detUdetL=detLU=detA
行列式的定义
det(A)=∑n!a1αa2βa1γ...anωdet(A) = \sum_{n!} a_{1\alpha}a_{2\beta}a_{1\gamma}...a_{n\omega}det(A)=n!∑a1αa2βa1γ...anω
(α,β,γ,...,ω)(\alpha,\beta,\gamma,...,\omega)(α,β,γ,...,ω)is permutation of (1,2,3,…,n)
Singular
Exist a none zero vector X, satisfiy Ax=0Ax = 0Ax=0,then A is singular.
特征值和特征向量
定义:A是n阶矩阵,若实数λ\lambdaλ和n维非零向量α\alphaα满足Aα=λαA\alpha = \lambda\alphaAα=λα,则称λ\lambdaλ为A的特征值,α\alphaα为A的特征向量。
- If A is singular, the λ=0\lambda=0λ=0 is an eigenvalue.
- Trace:∑iλi=∑aii\sum_i \lambda_i = \sum a_{ii}∑iλi=∑aii
- Determinant : det=∏iλidet = \prod_i \lambda_idet=∏iλi
- 对称或近似对称,特征值是实数,否则可能是复数。
对称矩阵
对于对称举矩阵
- the eigenvalues are also Real
- the eigenvectors are Perpendicular
Usual case:
A=SΛS−1A = S\Lambda S^{-1}A=SΛS−1
Symmetric case:
A=QΛQ−1=QΛQTA=Q\Lambda Q^{-1} = Q\Lambda Q^TA=QΛQ−1=QΛQT
奇异值分解
定义:矩阵的奇异值分解是指,将一个非零的m×nm\times nm×n实矩阵A,A∈Rm×nA,A\in R^{m\times n}A,A∈Rm×n,表示为以下三个实矩阵乘积形式的运算,即进行矩阵的因子分解:
A=UΣVTA= U\Sigma V^TA=UΣVT
其中UUU是mmm阶正交矩阵,VVV是nnn阶正交矩阵,Σ\SigmaΣ是由降序排列的非负的对角线元素组成的m×nm\times nm×n矩形对角阵,满足
UUT=IVVT=IΣ=diag(σ1,σ2,...,σp)UU^T=I\\VV^T=I\\ \Sigma=diag(\sigma_1,\sigma_2,...,\sigma_p)UUT=IVVT=IΣ=diag(σ1,σ2,...,σp)
σ1≥σ2≥...≥σp≥0\sigma_1\ge \sigma_2\ge ...\ge\sigma_p\ge 0σ1≥σ2≥...≥σp≥0
p=min(m,n)p=min(m,n)p=min(m,n)
UΣVTU\Sigma V^TUΣVT称为矩阵A的奇异值分解(singular value decomposition),σi\sigma_iσi称为矩阵A的奇异值(singular value),UUU的列向量称为左奇异向量,V的列向量称为右奇异向量。
奇异值分解定理:若A为m×nm\times nm×n实矩阵,A∈Rm×nA\in R^{m\times n}A∈Rm×n,则A的奇异值分解存在
A=UΣVTA=U\Sigma V^TA=UΣVT
其中UUU是m阶正交矩阵,VVV是n阶正交矩阵,Σ\SigmaΣ是m×nm\times nm×n矩形对角矩阵,其对角线元素非负,且降序排列。
本文深入讲解了矩阵乘法的不同视角,包括常规视角、通过矩阵与向量乘法视角等,并探讨了左逆矩阵与右逆矩阵的概念。此外,还详细介绍了行列式的性质及其计算方法,特征值与特征向量的基本概念,以及对称矩阵的特性。最后,文章讲解了奇异值分解的定义及其实现。
1266

被折叠的 条评论
为什么被折叠?



