Integer Divisibility

本文介绍了一种算法,用于找到一个不被2或5整除的整数的倍数,该倍数仅由指定的单一数字组成。通过实例演示了如何确定这种倍数的位数,例如111是3的倍数且由3位1组成,333333是7的倍数且由6位3组成。文章提供了输入输出样例和C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

If an integer is not divisible by 2 or 5, some multiple of that number in decimal notation is a sequence of only a digit. Now you are given the number and the only allowable digit, you should report the number of digits of such multiple.

For example you have to find a multiple of 3 which contains only 1's. Then the result is 3 because is 111 (3-digit) divisible by 3. Similarly if you are finding some multiple of 7 which contains only 3's then, the result is 6, because 333333 is divisible by 7.


Input

Input starts with an integer T (≤ 300), denoting the number of test cases.

Each case will contain two integers n (0 < n ≤ 106 and n will not be divisible by 2 or 5) and the allowable digit (1 ≤ digit ≤ 9).


Output

For each case, print the case numbe

r and the number of digits of such multiple. If several solutions are there; report the minimum one.


Sample Input

3

3 1

7 3

9901 1


Sample Output

Case 1: 3

Case 2: 6

Case 3: 12


#include<cstdio>
#include<iostream>
typedef long long ll;
using namespace std;
int main()
{
	int n,i=1;
    scanf("%d",&n);
	while(n--){
		ll a,b,sum=1;
		scanf("%lld%lld",&a,&b);
		ll c=b;
		while(b%=a){   //等价于b%a==0但是更快,就相当于让余数一直增加到能整除为止 
			b=b*10+c;
			sum++;
		}
		printf("Case %d: %lld\n",i++,sum);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值