4、优化ORAM与高效用于安全计算及匿名公钥加密的构建方法

优化ORAM与高效用于安全计算及匿名公钥加密的构建方法

在当今数字化时代,数据安全和隐私保护变得至关重要。ORAM(Oblivious Random Access Memory,不经意随机访问内存)的优化以及匿名公钥加密技术在实现安全计算和保护数据隐私方面发挥着重要作用。下面我们将深入探讨这两个方面的相关技术和方法。

ORAM相关技术
  1. 数据更新计算
    在某些操作中,对于顶层节点中形式为 (v, d) 的每个条目,我们会计算另一个MUX函数,将该条目的新值设置为:
    ((v′′, d′′) = a_i · (v_i, d′_i) + (1 - a_i) · (v, d))
    需要注意的是,重复访问会逐渐增加树中存储数据加密的噪声。因此,需要定期刷新这些加密数据。一种方法是使用自举(bootstrapping)技术,另一种方法是采用交互式协议,具体步骤如下:

    • 服务器使用加法同态对加密数据进行盲化处理。
    • 服务器将盲化后的加密数据发送给客户端。
    • 客户端对数据进行解密并重新加密。
    • 服务器去除盲化因子。
  2. ORAM驱逐操作
    如果使用同态加密(HE)对ORAM中的数据进行加密,服务器可以完全非交互地进行驱逐操作。当选择一个节点进行驱逐时,服务器会同态评估一个函数,将该节点中存储的每个项目推送到“当前驱逐叶节点”和与该项目关联的叶节点的最近公共祖先中的可用插槽。驱逐操作涉及的操作与读取操作所需的操作类似,

在充满仪式感的生活里,一款能传递心意的小工具总能带来意外惊喜。这款基于Java开发的满屏飘字弹幕工具,正是为热爱生活、乐于分享的你而来——它以简洁优雅的视觉效果,将治愈系文字化作灵动弹幕,在屏幕上缓缓流淌,既可以作为送给心仪之人的浪漫彩蛋,也能成为日常自娱自乐、舒缓心情的小确幸。 作为程序员献给crush的心意之作,工具的设计藏满了细节巧思。开发者基于Swing框架构建图形界面,实现了无边框全屏显示效果,搭配毛玻璃质感的弹幕窗口圆润边角设计,让文字呈现既柔和又不突兀。弹幕内容精选了30条治愈系文案,从“秋天的风很温柔”到“你值得所有温柔”,涵盖生活感悟、自我关怀、浪漫告白等多个维度,每一条都能传递温暖力量;同时支持自定义修改文案库,你可以替换成专属情话、纪念文字或趣味梗,让弹幕更具个性化。 在视觉体验上,工具采用柔和色调生成算法,每一条弹幕都拥有独特的清新配色,搭配半透明渐变效果平滑的移动动画,既不会遮挡屏幕内容,又能营造出灵动治愈的氛围。开发者还优化了弹幕的生成逻辑,支持自定义窗口大小、移动速度、生成间隔等参数,最多可同时显示60条弹幕,且不会造成电脑卡顿;按下任意按键即可快速关闭程序,操作便捷无负担。 对于Java学习者而言,这款工具更是一份优质的实战参考。源码完整展示了Swing图形界面开发、定时器调度、动画绘制、颜色算法等核心技术,注释清晰、结构简洁,哪怕是初学者也能轻松理解。开发者在AI辅助的基础上,反复调试优化细节,解决了透明度控制、弹幕碰撞、资源占用等多个问题,这份“踩坑实录”也为同类项目开发提供了宝贵经验。 无论是想给喜欢的人制造浪漫惊喜,用满屏文字传递心意;还是想在工作间隙用治愈文案舒缓压力,或是作为Java学习的实战案例参考,这款满屏飘字弹幕工具都能满足你的需求。它没有复杂的操作流程,无需额外配置环境,下载即可运行,用最纯粹的设计传递最真挚的
内容概要:本文介绍了一种基于CEEMDAN-GRU的中短期天气预测模型,通过将完全集合经验模态分解自适应噪声(CEEMDAN)门控循环单元(GRU)相结合,实现对非线性、非平稳气象时间序列的高效建模精准预测。CEEMDAN用于将原始气象数据(如温度、风速等)自适应分解为多个本征模态函数(IMFs),有效提取多尺度特征并降低噪声干扰;随后,每个IMF分量分别输入独立的GRU网络进行时序建模,最后将各分量预测结果重构为最终输出。该方法显著提升了预测精度、鲁棒性泛化能力,同时兼顾计算效率和模型可解释性,适用于复杂气象环境下的智能预测任务。文中还概述了模型架构、关键技术挑战及解决方案,并提供了MATLAB实现的部分代码示例。; 适合人群:具备一定信号处理或机器学习基础,从事气象预测、时间序列分析、人工智能应用研究的科研人员工程师,尤其是关注数据驱动型预测模型开发的技术人员。; 使用场景及目标:①应用于中短期天气要素(如气温、降水、风速)的高精度预测;②解决传统气象模型在非线性、非平稳数据建模中的局限性;③探索CEEMDAN深度学习融合在多尺度时间序列预测中的实际效能;④为防灾减灾、智慧气象、能源调度等领域提供可靠预测技术支持。; 阅读建议:此资源侧重于方法原理系统架构设计,建议结合MATLAB代码实践操作,深入理解CEEMDAN分解过程GRU建模细节,并可通过调整超参数、优化融合策略进一步提升模型性能。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值