[BZOJ3307][雨天的尾巴][树链剖分+线段树]
题目大意:
N<=100000个点,形成一个树状结构。有M<=100000次发放,每次选择两个点x,y,对于x到y的路径上(含
思路:
考虑如果不是一棵树而是一段序列应该怎么做,显然我们可以开一棵权值线段树,对于一个命令
如果是一棵树的话,把树树剖成很多条链后,在每条链上按序列上一样做就好了。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
namespace IO {
inline char get(void) {
static char buf[1000000], *p1 = buf, *p2 = buf;
if (p1 == p2) {
p2 = (p1 = buf) + fread(buf, 1, 1000000, stdin);
if (p1 == p2) return EOF;
}
return *p1++;
}
inline void read(int &x) {
x = 0; static char c;
for (; !(c >= '0' && c <= '9'); c = get());
for (; c >= '0' && c <= '9'; x = x * 10 + c - '0', c = get());
}
inline void write(int x) {
if (!x) return (void)puts("0");
static short s[12], t;
while (x) s[++t] = x % 10, x /= 10;
while (t) putchar('0' + s[t--]);
putchar('\n');
}
};
const int Maxn = 100010;
int head[Maxn], sub;
struct Edge {
int to, nxt, v;
Edge(void) {}
Edge(const int &to, const int &nxt, const int &v) : to(to), nxt(nxt), v(v) {}
} edge[2500005];
inline void add(const int &a, const int &b, const int &v = 0) {
edge[++sub] = Edge(b, head[a], v), head[a] = sub;
}
int n, m, fa[Maxn], dep[Maxn], belong[Maxn], pos[Maxn], id[Maxn], siz[Maxn], dfn;
inline void dfs1(int u) {
siz[u] = 1;
for (int i = head[u], v; i; i = edge[i].nxt) {;
if ((v = edge[i].to) == fa[u]) continue;
dep[v] = dep[u] + 1, fa[v] = u;
dfs1(v); siz[u] += siz[v];
}
}
inline void dfs2(int u, int path) {
pos[u] = ++dfn, id[dfn] = u, belong[u] = path;
int k = 0;
for (int i = head[u], v; i; i = edge[i].nxt) {
v = edge[i].to;
if (dep[v] > dep[u] && siz[v] > siz[k]) k = v;
}
if (!k) return; dfs2(k, path);
for (int i = head[u], v; i; i = edge[i].nxt) {
v = edge[i].to;
if (dep[v] > dep[u] && v != k) dfs2(v, v);
}
}
int Mx[Maxn << 2], Mxp[Maxn << 2], dis[Maxn], con[Maxn], tot, ans[Maxn];
inline bool cmp(int a, int b) {
return (Mx[a] > Mx[b]) || (Mx[a] == Mx[b] && con[Mxp[a]] < con[Mxp[b]]);
}
inline void pushUp(int o) {
if (cmp(o << 1, o << 1 | 1)) Mx[o] = Mx[o << 1], Mxp[o] = Mxp[o << 1];
else Mx[o] = Mx[o << 1 | 1], Mxp[o] = Mxp[o << 1 | 1];
}
inline void build(int o, int l, int r) {
if (l == r) return (void) (Mxp[o] = l);
int mid = (l + r) >> 1;
build(o << 1, l, mid), build(o << 1 | 1, mid + 1, r);
pushUp(o);
}
inline void cover(int o, int l, int r, int pos, int val) {
if (l == r) return (void)(Mx[o] += val);
int mid = (l + r) >> 1;
if (mid >= pos) cover(o << 1, l, mid, pos, val);
else cover(o << 1 | 1, mid + 1, r, pos, val);
pushUp(o);
}
int main(void) {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
IO::read(n), IO::read(m);
for (int i = 1, a, b; i < n; i++) {
IO::read(a), IO::read(b);
add(a, b), add(b, a);
}
dfs1(1), dfs2(1, 1);
sub = 0; memset(head, 0, sizeof head);
for (int i = 1, x, y, z; i <= m; i++) {
IO::read(x), IO::read(y), IO::read(z);
if (!dis[z]) dis[z] = ++tot, con[tot] = z;
z = dis[z];
while (belong[x] != belong[y]) {
if (dep[belong[x]] < dep[belong[y]]) swap(x, y);
add(pos[belong[x]], z, 1);
add(pos[x] + 1, z, -1);
x = fa[belong[x]];
}
if (dep[x] > dep[y]) swap(x, y);
add(pos[x], z, 1); add(pos[y] + 1, z, -1);
}
build(1, 1, m);
for (int i = 1; i <= n; i++) {
for (int j = head[i]; j; j = edge[j].nxt)
cover(1, 1, m, edge[j].to, edge[j].v);
ans[id[i]] = Mx[1] ? Mxp[1] : 0;
}
for (int i = 1; i <= n; i++) IO::write(con[ans[i]]);
return 0;
}
完。
By g1n0st